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We propose an approach to solve the stochastic neutron point kinetics equations using an adaptation of
the diagonalization-decomposition method (DDM). This new approach (Double-DDM) yields a nonstiff
solution for the stochastic formulation, allowing the calculation of the neutron and precursor densities
at any time of interest without the need of using progressive time steps. We use Double-DDM to compute
results for stochastic problems with constant, linear, and sinusoidal reactivities. We show that these
results strongly agree with those obtained by other approaches established in the literature. We also
compute and analyze the first four statistical moments of the solutions.

� 2016 Published by Elsevier Ltd.
1. Introduction

The neutron point kinetics equations (Hetrick, 1971; Kinard and
Allen, 2004; Hayes and Allen, 2005) are the coupled differential
equations for the neutron density and for the delayed neutron pre-
cursor concentrations. These equations model the time-dependent
behavior of a nuclear reactor and provide insight into the dynamics
of its operation. The time-dependent parameters in this system are
the reactivity function and the neutron source term.

The neutron density and delayed neutron precursor
concentrations vary randomly with time; however, the point
kinetics equationsaredeterministic andcanonlybeused toestimate
average values. Random fluctuations in the neutron density and
precursor concentrations can be significant at low power levels
(Hurwitz et al., 1963), which points to the importance of estimating
these variations.

Hayes and Allen (2005) have generalized the standard
deterministic point kinetics equations, deriving a system of
stochastic differential equations that model the random behavior
of the neutron density and the precursor concentrations in a point
reactor. Due to the issue of stiffness, this system was implemented
numerically using a stochastic piecewise constant approximation
method (Stochastic PCA). Work performed by Saha Ray (2012)
has shown that order 1.5 strong Taylor and Euler–Maruyama
numerical methods are valid computational alternatives to
Stochastic PCA in solving the stochastic point kinetics equations.
However, with the exception of cases modeled with either none
or only one group of neutron precursors, the stiffness of the
problem remains.

In this paper we propose to solve this stochastic formulation
using a double decomposition approach based on the
diagonalization-decomposition method (DDM) decribed by
Wollmann da Silva et al. (2014). This proposed method is the major
novelty and principal contribution of this work, yielding a nonstiff
solution for the stochastic point kinetics equations. Specifically, this
approach allows the calculation of the neutron and precursor
densities at any time of interest without the need of using
progressive time steps. This solution is obtained with a minimal
amount of numerical approximations of the model; the largest
numerical effort lies in the truncation of the decomposition and
the integrations required by DDM.

The major caveat in this approach is that convergence of DDM is
yet to be proven. For this reason, a Lyapunov criterion (Boichenko
et al., 2005) is used to guarantee convergence (cf. Petersen et al.,
2011; Wollmann da Silva et al., 2014). We present computational
results for problems with constant, linear, and sinusoidal reactivi-
ties. The results of the proposed method are compared against
those of other approaches established in the literature, showing
strong agreement. We also compute the first four statistical
moments of the solutions.

This work is an expanded version of a recent conference paper
(Wollmann da Silva et al., 2015). The remainder of this paper is
organized as follows. In Section 2 we present a brief review on
the key aspects of DDM. In Section 3 we formulate the stochastic



Fig. 1. DDM approach to solve the deterministic problem.
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point kinetics equations. We introduce the proposed double
decomposition approach in Section 4. Numerical results are given
in Section 5 for problems with constant (Section 5.1) and
time-dependent (Section 5.2) reactivities. The paper concludes in
Section 6 with a discussion of the work presented.

2. The diagonalization-decomposition method (DDM)

Following the work performed by Wollmann da Silva et al.
(2014), one can obtain an analytical representation for the solution
of the neutron point kinetics equations that is free of stiffness. The
neutron point kinetics equations with six groups of precursors and
time-dependent reactivity qðtÞ are written as:

d
dt

nðtÞ ¼ qðtÞ � b
K

nðtÞ þ
X6
i¼1

kiCiðtÞ; nð0Þ ¼ n0; ð2:1aÞ

d
dt

CiðtÞ ¼ bi

K
nðtÞ � kiCiðtÞ; Cið0Þ ¼ bin0

Kki
; ð2:1bÞ

for i ¼ 1; 2; . . . ; 6: Here, nðtÞ is the neutron density; CiðtÞ is the
density of the ith delayed neutron precursor group; ki is the decay
constant for a specific group i; K represents the neutron mean
generation time; and bi represents the delayed-neutron fraction in
a specific group i. The total fraction of delayed neutrons is given

by b ¼P6
i¼1bi:

A recursive scheme with finite recursive depth R is used to
obtain a solution. The truncation index is determined with
exponential convergence by the Lyapunov criterion (Boichenko
et al., 2005; Petersen et al., 2011), evaluated after each recursion
step. The neutron population and the precursors concentrations
are written in terms of the solution from a recursion initialization
ð j ¼ 0Þ and the respective correction terms ð j > 0Þ for an
appropriate R 2 N :

nðtÞ ¼
XR
j¼0

njðtÞ; ð2:2aÞ

CiðtÞ ¼
XR
j¼0

Ci;jðtÞ: ð2:2bÞ

The combination of Eqs. (2.1) and (2.2) yields a system with
7� R unknowns. We define

YðtÞ ¼
XR
j¼1

Y jðtÞ; ð2:3aÞ

Y jðtÞ ¼ ½njðtÞ;C1;jðtÞ;C2;jðtÞ; C3;jðtÞ; C4;jðtÞ;C5;jðtÞ;C6;jðtÞ�T ; ð2:3bÞ

X ¼ diag
q0 � b

K
;�k1;�k2;�k3;�k4;�k5;�k6

� �
; ð2:3cÞ

and

N ¼

q1ðtÞ
K k1 k2 . . . k6
b1
K 0 0 . . . 0
b2
K 0 0 . . . 0

..

. ..
. . .

. . .
. ..

.

b6
K 0 . . . 0 0

2666666664

3777777775
; ð2:3dÞ

where the constant q0 and q1ðtÞ are such that qðtÞ ¼ q0 þ q1ðtÞ:
Given the recursive system

d
dt

Y0ðtÞ �XY0ðtÞ ¼ 0; ð2:4aÞ
d
dt

Y jðtÞ �XY jðtÞ ¼ NðtÞY j�1ðtÞ; j > 0 ; ð2:4bÞ

the solution of Eq. (2.4a) is
Y0ðtÞ ¼ expðXtÞY0ð0Þ; ð2:5aÞ
with Y0ð0Þ ¼ ½n0;C1ð0Þ; C2ð0Þ; . . . ; C6ð0Þ�T : Equation (2.4b) may be
formally solved by the Laplace transform:

ð2:5bÞ
since the initial condition from Eqs. (2.1) is fully absorbed in
Eq. (2.5a). The integral in Eq. (2.5b) is evaluated using the
Gauss–Legendre method.

A flowchart describing the implementation of this method is
given in Fig. 1. The solution is obtained in an analytical representa-
tion that may be evaluated for any time value (free of stiffness).

3. The stochastic formulation

Hayes and Allen (2005) derived a system of Itô stochastic
differential equations that model the dynamics of the neutron
density and the delayed neutron precursors in a nuclear reactor.
This formulation describes the variation of the population and
can be interpreted as a balance between deaths, births, and
transformations of neutrons in the system. The probabilities of
these events are determined by the physical parameters of the
model, such as the total and partial delayed neutron fractions;
the fraction of delayed neutrons of each precursor group; the decay
constant of each group; and the average number of neutrons
produced in each fission.

Assuming a time interval small enough such that only one event
occurs, one can write

d
dt

YðtÞ ¼ bAðtÞYðtÞ þ QðtÞ þ bB1
2ðtÞ d

dt
WðtÞ; ð3:1aÞ



M. Wollmann da Silva et al. / Annals of Nuclear Energy 97 (2016) 47–52 49
where

YðtÞ ¼ ½nðtÞ;C1ðtÞ;C2ðtÞ;C3ðtÞ;C4ðtÞ;C5ðtÞ;C6ðtÞ�T ; ð3:1bÞ
QðtÞ ¼ ½qðtÞ;0;0;0;0;0;0�T ; ð3:1cÞ
WðtÞ ¼ ½W0ðtÞ;W1ðtÞ;W2ðtÞ;W3ðtÞ;W4ðtÞ;W5ðtÞ;W6ðtÞ�T ; ð3:1dÞbAðtÞ ¼ Xþ NðtÞ; ð3:1eÞ

bBðtÞ ¼
f a1 a2 . . . a6
a1 b1;1 b1;2 . . . b1;6

a2 b2;1 b2;2 . . . b2;6

..

. ..
. . .

. . .
. ..

.

a6 b6;1 . . . b6;5 b6;6

266666664

377777775: ð3:1fÞ

Here, X and NðtÞ are given by Eqs. (2.3c) and (2.3d), WiðtÞ are
Wiener processes, and

f ¼ 2b� 1� qðtÞ þ ð1� bÞ2m
K

 !
nðtÞ

X6
i¼1

kiCiðtÞ þ qðtÞ; ð3:1gÞ

ai ¼ bi

K
�1þ ð1� bÞmð ÞnðtÞ � kiCiðtÞ; ð3:1hÞ

bi;j ¼
bibj m
K

nðtÞ þ dijkiCiðtÞ; ð3:1iÞ

with m ¼ total number of neutrons per fission (prompt neutrons +

delayed neutrons). Note that if bBðtÞ ¼ 0; then Eq. (3.1a)
ðwith QðtÞ ¼ 0Þ reduces to the deterministic problem discussed in
Section 2.
Fig. 2. Double-DDM approach to solve the stochastic problem.
4. The proposed method (Double-DDM)

We propose to solve the stochastic formulation in Section 3 by
adapting the recursivemethoddescribed in Section 2. This approach
yields a nonstiff solution to the stochastic system in Eqs. (3.1).

Since the matrix bB depends on both the neutron populations
and the delayed neutron concentrations, we resort to a double
decomposition to obtain a solution for this problem:

I. Using DDM as described in Section 2, Eq. (3.1a) is solved forbB ¼ 0; this yields the deterministic solution YðtÞ ¼ YdðtÞ;
II. YdðtÞ is used to determine the matrix bB for a sequence of

discrete time steps (its components are constant in each
time step);

III. bB1
2 is obtained through diagonalization (bB is symmetric);

IV. Since QðtÞ is known for a specific time interval, a
decomposition scheme analogue to DDM is applied:

d
dt

Y0ðtÞ �XY0ðtÞ ¼ 0; ð4:1aÞ
d
dt

Y jðtÞ �XY jðtÞ ¼ NðtÞY j�1ðtÞ þFðtÞ; ð4:1bÞ

where FðtÞ ¼ QðtÞ þ bB1
2 d
dtWðtÞ are constants known in each time

step.
The total number K of stochastic components ‘‘drawn” in this

approach is defined by the Central Limit Theorem (Meyer, 1965)
to guarantee a small statistical error.

For example, let Y be the ‘‘real” expected value of Y : The
numerical expected value EðYÞ and variance VarðY) are given by

EðYÞ ¼
XK
k¼1

Y ðkÞ

K
; ð4:2aÞ

VarðYÞ ¼ r2ðYÞ ¼
XK
k¼1

Y ðkÞ � EðYÞ� �2
K

; ð4:2bÞ
where the index k represents the different choices of stochastic
components (histories). The Central Limit Theorem (CLM) implies
that the inequality

1� Y
EðYÞ

�����
����� < 2rðYÞffiffiffiffi

K
p

EðYÞ ð4:3Þ

holds with probability 0.95.
For all results shown in this paper, K is large enough to guaran-

tee a statistical error smaller than 2% with 95% confidence for the
first two raw moments. In the example given above, this means
that K is chosen such that the right-hand side of Eq. (4.3) is smaller
than 0.02. The flowchart in Fig. 2 describes the implementation of
the proposed method.

5. Numerical results

In this section we present numerical results for the
Double-DDM approach proposed in Section 4 for examples with
(i) constant and (ii) time-dependent reactivities. We compare these
results against those obtained with other approaches established
in the literature.

In addition to the expected value EðYÞ and variance VarðY)
defined in Eqs. (4.2), we also calculate two standardised moments
for the neutron density n: skewness and excess kurtosis. These are
defined as



Table 2
Fraction of delayed neutrons and decay constants for the precursor groups.

Group 1 2 3 4 5 6

bi � 10�3 0.266 1.491 1.316 2.849 0.896 0.182

ki 0.0127 0.0317 0.115 0.311 1.4 3.87
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SkewðnÞ ¼ c1ðnÞ ¼
XK
k¼1

nðkÞ � EðnÞ� �3
Kr3ðnÞ ; ð5:1aÞ

KurtðnÞ � 3 ¼ c2ðnÞ ¼
XK
k¼1

nðkÞ � EðnÞ� �4
Kr4ðnÞ

" #
� 3; ð5:1bÞ

which gives us further insight on the behavior of the stochastic
solutions.

5.1. Constant reactivity

In the following examples we present the results of four
methods established in the literature: Monte Carlo and Stochastic
PCA (Hayes and Allen, 2005); order 1.5 strong Taylor and
Euler–Maruyama (Saha Ray, 2012). These results are reproduced
here as they were reported in the aforementioned references.

We compare these results with those obtained with the
deterministic diagonalization-decomposition method (DDM) and
with the Double-DDM approach. The solutions of the deterministic

DDM are obtained by solving Eq. (3.1a) with bB ¼ 0; we point out
that this is also the first step of Double-DDM.

5.1.1. Step-reactivity insertion: one precursor
This example does not model an actual physical nuclear reactor

problem. Nevertheless, considering only one group of precursors
implies that the stiffness of the problem disappears; this provides
a simple computational solution that is useful for a first
comparison with other methods.

The physical parameters are k1 ¼ 0:1; b ¼ b1 ¼ 0:05; m ¼ 2:5;
q ¼ 200; K ¼ 2

3, and qðtÞ ¼ � 1
3 for t P 0: The initial condition is

Yð0Þ ¼ ½400; 300�T . The expected values and standard deviations
of nðtÞ and C1ðtÞ at time t ¼ 2 are presented in Table 1 for each
of the methods. A total of K ¼ 1;000 histories were accumulated
for the Double-DDM approach. Skewness and excess kurtosis for
the neutron density were found to be c1ðnð2ÞÞ ¼ �1� 10�10 and

c2ðnð2ÞÞ ¼ 3� 10�11: The fact that c1 and c2 are nearly zero implies
that the distribution of stochastic solutions is symmetric and has
Gaussian-like peak and tail.

It can be seen that there exists a close agreement between
Double-DDM and the results obtained with Monte Carlo and
Stochastic PCA. Euler–Maruyama and order 1.5 strong Taylor (Tay-
lor 1.5) yield slightly higher results, very close to those obtained
with the deterministic DDM.

5.1.2. Step-reactivity insertion: six precursors
The following two examples model step-reactivity insertions in

a nuclear reactor with 235U as a fissile material. In this case, we
consider a stiff system of equations with six precursor groups.
The set of physical parameters is taken from Kinard and Allen
(2004): m ¼ 2:5; K ¼ 0:00002; q ¼ 0, and b ¼ 7� 10�3; with bi

and ki given in Table 2. The initial condition is given by

Yð0Þ ¼ 100 1;
b1

k1K
;
b2

k2K
;
b3

k3K
;
b4

k4K
;
b5

k5K
;
b6

k6K

� 	T
: ð5:2Þ
Table 1
Results for one group of precursors and step-reactivity insertion qðtÞ ¼ �1=3.

Monte
Carlo

Stochastic
PCA

Euler
Maruyama

Taylor
1.5

DDM Double
DDM

Eðnð2ÞÞ 400.03 395.32 412.23 412.10 412.13 402.35
rðnð2ÞÞ 27.311 29.411 34.391 34.519 – 28.610
EðC1ð2ÞÞ 300.00 300.67 315.96 315.93 315.93 305.84
rðC1ð2ÞÞ 7.8073 8.3564 8.2656 8.3158 – 7.9240
We compute results for a prompt subcritical step-reactivity
insertion qðtÞ ¼ 0:003 at time t ¼ 0:1; and for a prompt critical
step-reactivity insertion qðtÞ ¼ 0:007 at time t ¼ 0:001: We define

CðtÞ ¼
X6
i¼1

CiðtÞ; ð5:3Þ

and present the expected values and standard deviations for each of
the methods in Table 3.

We collected K ¼ 10;000 histories for the Double-DDM
approach. For the subcritical step-reactivity qðtÞ ¼ 0:003; skewness
was found to be c1ðnð0:1ÞÞ ¼ �1� 10�7 and excess kurtosis

c2ðnð0:1ÞÞ ¼ 1:3� 10�9: For the critical step-reactivity
qðtÞ ¼ 0:007; skewness and excess kurtosis were computed
respectively as c1ðnð0:001ÞÞ ¼ �1:02� 10�7 and c2ðnð0:001ÞÞ ¼
1:15� 10�8: These results for the third and fourthmoments indicate
that the distribution of the stochastic solutions is symmetric andhas
neither a sharp peak nor a heavy tail.

As in the previous example, the results obtained with
Double-DDM are in close agreement to the results from Monte
Carlo and Stochastic PCA. The results from Euler–Maruyama and
order 1.5 strong Taylor are closer to those of deterministic DDM.

5.2. Time-dependent reactivity

The current literature lacks numerical results for the stochastic
system in Eq. (3.1a) with time-dependent reactivities. For this rea-
son, the results collected from the literature and reproduced next

represent only the deterministic solution ðwith bB ¼ 0Þ: Although
not ideal, this approach allows us to verify that the expected value
obtained with Double-DDM closely agrees with well established
models for problems with time-dependent reactivities. All the
following examples take into account six precursor groups.

5.2.1. Linear reactivity qðtÞ ¼ at
The following two examples model a ramp reactivity qðtÞ ¼ at

for a thermal nuclear reactor. The physical parameters considered
are: K ¼ 0:00001; nð0Þ ¼ 1:0, and b ¼ 6:403� 10�3; with bi and ki
taken from Lewins (1978) and given in Table 4.

We compute the neutron density nðtÞ for two different choices
of constant a: 0.25 and 0.5. The results obtained with Double-DDM
are given in Table 5 for times t ¼0.25, 0.5, 0.75, and 1.0. We com-
pare these results with those obtained with the Padé approxima-
tion (Aboanber and Nahla, 2002) and the generalization of the
analytical exponential model (GAEM), as reported by Nahla (2008).

The number of histories collected for the case a ¼ 0:25 was
K ¼ 15;738: We computed the higher moments for time t ¼ 1:0;
finding the standard deviation rðnð1ÞÞ ¼ 0:978; skewness
c1ðnð1ÞÞ ¼ �3:02� 10�7; and excess kurtosis c2ðnð1ÞÞ ¼ �1� 10�7:

For the case a ¼ 0:5; we collected K ¼ 27;523 histories, and found
rðnð1ÞÞ ¼ 1:11345; c1ðnð1ÞÞ ¼ �2:15� 10�6; c2ðnð1ÞÞ ¼ �3�10�8:

This showsthat, inbothcases, thedistributionof stochastic solutions
is nearly normal.

Double-DDM shows good agreement with the other methods
shown in Table 5. The results obtained with Double-DDM are
slightly larger for the first case ða ¼ 0:25Þ; and slightly smaller
for the second case. The relative differences are around 1% or smal-
ler, being well within 1 standard deviation.



Table 4
Fraction of delayed neutrons and decay constants for the precursor groups.

Group 1 2 3 4 5 6

bi � 10�3 0.246 1.363 1.203 2.605 0.819 0.167

ki 0.0127 0.0317 0.115 0.311 1.4 3.87

Table 5
Neutron density nðtÞ with ramp reactivity qðtÞ ¼ at.

a Time Padé GAEM DDM Double
DDM

0.25 1.069840 1.069541 1.069542 1.069763
0.50 1.157065 1.156694 1.156695 1.157867

0.25 0.75 1.265795 1.265331 1.265332 1.269374
1.0 1.402562 1.401981 1.401982 1.403561

0.25 1.149544 1.149200 1.149210 1.137216
0.50 1.369438 1.368927 1.368928 1.356934

0.5 0.75 1.708411 1.707600 1.707601 1.695607
1.0 2.276692 2.275271 2.275272 2.263278

Table 3
Results for six groups of precursors with subcritical ðqðtÞ ¼ 0:003Þ and critical ðqðtÞ ¼ 0:007Þ step-reactivity insertions.

q Monte
Carlo

Stochastic
PCA

Euler
Maruyama

Taylor
1.5

DDM Double
DDM

Eðnð0:1ÞÞ 183.04 186.31 208.60 199.41 200.01 187.05
rðnð0:1ÞÞ 168.79 164.16 255.95 168.55 – 167.83

0.003 EðCð0:1ÞÞ � 105 4.478 4.491 4.498 4.497 4.497 4.488

rðCð0:1ÞÞ 1495.7 1917.2 1233.4 1218.8 – 1475.6

Eðnð0:001ÞÞ 135.67 134.55 139.57 139.57 139.61 135.86
rðnð0:001ÞÞ 93.376 91.242 92.042 92.047 – 93.210

0.007 EðCð0:001ÞÞ � 105 4.464 4.464 4.463 4.463 4.463 4.463

rðCð0:001ÞÞ 16.226 19.444 6.071 18.337 – 17.845

Table 7
Neutron density nðtÞ with sinusoidal reactivity qðtÞ ¼ 0:00073 sinðtÞ.

Time K & H Taylor DDM Double
DDM

0 1.00000 1.00000 1.00000 1.0000000
1 1.12397 1.12394 1.12396 1.1119659
2 1.16881 1.16884 1.16889 1.1568959
3 1.07443 1.07442 1.07448 1.0624859
4 0.95381 0.95380 0.95382 0.9418259
5 0.90737 0.90737 0.90735 0.8953559
6 0.96151 0.96158 0.96153 0.9495359
7 1.08748 1.08749 1.08745 1.0754559
8 1.17168 1.17164 1.17167 1.1596759
9 1.11128 1.11124 1.11130 1.0993059
10 0.98464 0.98464 0.98468 0.9726859

t (seconds)
0 1 2 3 4 5 6 7 8 9 10

N
eu

tro
n 

D
en

si
ty

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
DDM
Double-DDM

Fig. 3. Neutron density for a sinusoidal reactivity qðtÞ ¼ 0:00073 sinðtÞ.
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5.2.2. Sinusoidal reactivity qðtÞ ¼ b sinðtÞ
The last example simulates a case with sinusoidal reactivity

qðtÞ ¼ b sinðtÞ; with b ¼ 0:00073; K ¼ 0:00003; and nð0Þ ¼ 1:0:
The total fraction of delayed neutrons is given by
b ¼ 6:473� 10�3; with bi and ki shown in Table 6.

The results obtained with Double-DDM are presented in Table 7
for every whole second up until t ¼ 10: We compare these results
with those reported byWollmann da Silva et al. (2014). These were
obtained with the method introduced by Kang and Hansen (1973),
referred to as K & H in Table 7, and with the method of Taylor series
(cf. Nahla, 2011).

We collected K ¼ 2;934;237 histories to achieve the require-
ment imposed for the statistical error. The higher moments for
time t ¼ 10 yield rðnð10ÞÞ ¼ 1:3242; c1ðnð10ÞÞ ¼ �0:0048; and
c2ðnð10ÞÞ ¼ �0:013: These results indicate (i) a very small
asymmetry in the distribution of stochastic solutions, with a
slightly larger left tail; and (ii) a very small yet noticeable ‘‘flatter”
peak when compared to a normal.

In general, Double-DDM closely agrees with the other methods
presented here for comparison. Results displayed in Table 7 show
that Double-DDM yields slightly smaller results than those
attained with the other methods. This can be confirmed in Fig. 3,
Table 6
Fraction of delayed neutrons and decay constants for the precursor groups.

Group 1 2 3 4 5 6

bi � 10�3 0.214 1.423 1.247 2.568 0.748 0.273

ki 0.0124 0.0305 0.111 0.301 1.14 3.01
which depicts the average behavior of the stochastic solution
compared to the deterministic solution (DDM). These differences
are, once again, very small ð� 1%Þ; and well within 1 standard
deviation.
6. Conclusions

In this paper we propose an approach to solve the stochastic
neutron point kinetics equations with a solution procedure that
is free of stiffness. This is achieved through an adaptation of the
diagonalization-decomposition method (DDM) introduced in
Wollmann da Silva et al. (2014), wich provides a nonstiff solution
for the deterministic point kinetics equations. DDM uses the
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Laplace transform to obtain a formal solution, then applies a
decomposition into a recursive scheme, using Gauss–Legendre
integration.

The essential steps of the proposed approach (Double-DDM)
are: (i) the deterministic problem is solved with DDM; (ii) the
deterministic solution is used to build the stochastic component;
(iii) another decomposition scheme analogue to DDM is used to
solve the stochastic system. This allows the calculation of the
neutron density and precursor concentrations at any time of
interest, without the need to resort to progressive time steps.
The elimination of stiffness comes from the fact that the evolution
of the solution by recursion adds correction terms to the whole
time interval of interest in each step, and simultaneously for each
term that depends on a specific time scale.

Since convergence of DDM is yet to be proven, a Lyapunov
criterion is used to guarantee convergence. The results of the
proposed method are compared against results obtained through
other approaches established in the literature. This comparison
shows close agreement for problems with constant step-
reactivity insertions, as well as time-dependent ramp reactivity
and sinusoidal reactivity insertions.

In the current literature, the stochastic problem is mainly
solved for constant reactivities; numerical solutions are limited
to feasible time intervals due to the stiffness inherent to the
problem. The mitigation of the stiffness character in solving the
stochastic formulation is the major novelty and principal
contribution of this work. Moreover, the analysis of the third and
fourth moments of the stochastic solutions is, to the best of our
knowledge, new.

The analyzed moments still depend on the size of the sample
set and on the frequency with which the stochastic fluctuations
are applied. In principle, an adjustment such as variance reduction
and its consequences for higher moments could yield more
realistic results. It would be necessary to find a reference scale in
order to obtain such results independently of the sample size or
frequency of application. This still needs to be identified, as well
as a necessary ingredient to mimic reactor fluctuations. These tasks
are left for future work.
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