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This paper presents a multiple length-scale asymptotic analysis for transport problems in
1-D diffusive random media. This analysis shows that the Levermore–Pomraning (LP)
equations can be adjusted in order to achieve the correct asymptotic behavior. This
adjustment appears in the form of a rescaling of the Markov transition functions, which
can be defined in a simple way. Numerical results are given that (i) validate the theoretical
predictions; and (ii) show that the adjusted LP equations greatly outperform the standard
LP model for this class of transport problems.
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1. Introduction

The diffusion approximation is a classic model for
particle transport in a physical system in which absorption
and sources are weak and the solution varies slowly over
the distance of a mean free path. The diffusion equation
has been shown to be an asymptotic limit of the transport
equation [1–3].

The Levermore–Pomraning (LP) equations [4–7] are a
well-known approach to model particle transport in a
heterogeneous physical system consisting of two or more
materials. They generalize the widely used atomic mix
model [5,8], which requires chunks of each material to be
optically thin. The LP model is known to be accurate for
problems with (i) weak scattering and (ii) a Markovian
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-UFRGS, Av. Osvaldo
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distribution of chord lengths across material chunks [9,10].
However, numerical experiments have indicated that the
LP model is inaccurate for diffusive systems [9,11].

In this work, we consider 1-D transport problems in
slab geometry. In particular, we assume that:
A1.
 The physical system is heterogeneous, consisting of
alternate layers of different materials. The thicknesses
of the layers are on the order of a mean free path (or
smaller).
A2.
 For convenience, we assume that the system is binary,
with different layers labeled 1 and 2. The cross
sections and source for material i (i¼1 or 2) are
labeled Σti, Σsi, and Qi.
A3.
 The geometrical structure of the system is a stochastic
binary mixture, with the mixing statistics taken as
Markovian.
A4.
 The system is diffusive (in a global sense). That is, the
physical system is optically thick, and absorption and
sources are weak at each spatial point.
We point out that assumptions A1 and A4 imply that the
number of material layers in the system is large.
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As introduced in [12], for the diffusive limit just
described, the standard LP model reduces to a diffusion
equation with an incorrect diffusion coefficient. This the-
oretically explains the inaccuracies observed in LP simula-
tions for diffusive problems. In this paper, we present an
asymptotic analysis that leads to an Adjusted LP (ALP)
model; this model preserves the correct asymptotic beha-
vior in this diffusive limit, greatly improving the accuracy
of the LP equations.

We include in this work numerical simulations that
validate the asymptotic theory presented for this diffusive
limit. These simulations demonstrate that (i) the solution
of the LP equations limits to the solution of the LP diffusion
equation predicted by our asymptotic theory; (ii) the
solution of the ALP equations limits to the solution of
the ALP diffusion equation predicted by our asymptotic
theory; (iii) the solution of the ALP model accurately
agrees with the correct (ensemble-averaged) solution of
the transport problem, while the standard LP model fails
to do the same.

We also include results showing that the ALP model
preserves the accuracy of the standard LP equations for
problems with weak or no scattering. Furthermore, we
present numerical simulations indicating that the ALP
equations remain accurate for problems in which the
diffusive characteristics of the medium are slightly relaxed.
In these simulations, the ALP model is shown to outperform
both its standard counterpart and the atomic mix model.

A summary of the remainder of the paper follows.
In Section 2 we present the asymptotic theory for the
transport equation in the 1-D random diffusive system. In
Section 3 we present the LP model and propose the
Adjusted LP equations, introducing a factor η to be defined
later. We perform an asymptotic analysis of the ALP
equations for η of Oð1Þ (Section 3.1) and for η of Oð1=εÞ
(Section 3.2). In Section 4 we propose an expression for η
motivated by the analysis performed in Section 3. We
present numerical results for problems in diffusive
(Section 4.1) and non-diffusive (Section 4.2) systems.
These results confirm the predictions of the asymptotic
analysis and validate the ALP model. We conclude with a
discussion in Section 5.

2. Asymptotic analysis of the transport equation

We consider the following 1-D steady-state, monoener-
getic transport problem, with vacuum boundaries and
space-dependent cross sections and source:

μ
∂ψ
∂x

x;μ
� �þΣt xð Þψ x;μ

� �¼ΣsðxÞ
2

Z 1

�1
ψ x;μ0� �

dμ0 þQ ðxÞ
2

;

�XrxrX; �1rμr1; ð2:1aÞ

ψ ð�X;μÞ ¼ 0; 0oμr1; ð2:1bÞ

ψ ðX;μÞ ¼ 0; �1rμo0: ð2:1cÞ
Moreover, taking into account the assumptions described
in the previous section, we consider the following:
I.
 The physical system �XrxrX consists of a stochas-
tic structure of alternate layers of two distinct
materials; a realization of the system is sketched in
Fig. 1. The cross sections and source in Eq. (2.1a) are
stochastic functions of space.
II.
 The spatial variable x is scaled so that the typical
width of a layer and a typical mean free path are Oð1Þ.
Thus, Σt ¼ Oð1Þ.
III.
 The system is optically thick. Thus, the dimensionless
parameter

ε� average width of a layer
width of the system

¼ 1
number of layers

ð2:2aÞ

is small, and

2X ¼width of the system¼Oð1=εÞ: ð2:2bÞ
IV.
 Absorption is weak at all spatial points. This is
expressed by writing the absorption cross section as

ΣtðxÞ�ΣsðxÞ ¼ΣaðxÞ ¼ ε2σaðxÞ; ð2:3Þ
where σaðxÞ ¼ Oð1Þ.
V.
 For convenience, we scale the source so that the
infinite-medium solution is Oð1Þ. This is expressed
by writing

Q ðxÞ ¼ ε2qðxÞ; ð2:4Þ
where qðxÞ ¼Oð1Þ.
VI.
 The flux depends on two spatial variables: the “fast”
spatial variable x, which describes rapid variations on
the order of a mean free path or a layer width, and a
new “slow” spatial variable

z¼ εx; ð2:5Þ
which describes slowly varying spatial variations in
the flux over the Oð1=εÞ optical width of the system.
This is expressed by writing

ψ ðx;μÞ ¼ ψ̂ ðx; z;μÞ; ð2:6aÞ
which implies

∂ψ
∂x

x;μ
� �¼ ∂ψ̂

∂x
x; z;μ
� �þε

∂ψ̂
∂z

x; z;μ
� �

: ð2:6bÞ
Introducing Eqs. (2.3)–(2.6) into Eq. (2.1a), we obtain
the following scaled transport equation:

μ
∂ψ̂
∂x

x; z;μ
� �þεμ

∂ψ̂
∂z

x; z;μ
� �þΣt xð Þψ̂ x; z;μ

� �

¼ΣtðxÞ�ε2σaðxÞ
2

Z 1

�1
ψ̂ x; z;μ0� �

dμ0 þε2
qðxÞ
2

: ð2:7Þ

This equation can be asymptotically solved by assuming
the ansatz

ψ̂ ðx; z;μÞ ¼
X1
n ¼ 0

εnψ̂ nðx; z;μÞ; ð2:8Þ

in which ε51, and x and z are treated as independent
variables. This calculation, given in detail elsewhere [12],



Fig. 1. Sketch of the 1-D stochastic system.
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yields the diffusion equation

� 1
3〈Σt〉

d2ϕ0

dz2
zð Þþ〈σa〉ϕ0 zð Þ ¼ 〈q〉; ð2:9Þ

where

〈Σt〉¼ volume-averaged total cross section; ð2:10aÞ

〈σa〉¼ volume-averaged absorption cross section; ð2:10bÞ

〈q〉¼ volume-averaged interior source: ð2:10cÞ
Finally, we return to the original unstretched variables.
Multiplying Eq. (2.9) by ε2 and using

Φ0ðxÞ ¼ϕ0ðεxÞ ¼ϕ0ðzÞ; ð2:11Þ
we obtain

� 1
3〈Σt〉

d2Φ0

dx2
xð Þþ〈Σa〉Φ0 xð Þ ¼ 〈Q〉; �XoxoX: ð2:12Þ

Notice that Eq. (2.12) is the leading-order asymptotic limit
of Eq. (2.7) as ε-0, and the unknownΦ0ðxÞ is the leading-
order estimate of the scalar flux.

Note: The atomic mix approximation [5,8] of Eq. (2.1a) is

μ
∂ψ
∂x

x;μ
� �þ〈Σt〉ψ x;μ

� �¼ 〈Σs〉
2

Z 1

�1
ψ x;μ0� �

dμ0 þ〈Q〉
2

;

�XrxrX; �1rμr1: ð2:13Þ
If the conventional diffusion approximation were applied to
Eq. (2.13), the resulting equation would be the same as
Eq. (2.12), which is simply the conventional diffusion equa-
tion with atomic mix (volume-averaged) cross sections.

3. The Adjusted Levermore–Pomraning (ALP) equations

The Levermore–Pomraning formulation [4–7] for
Eq. (2.1a) is given by

μ
∂piΨ i

∂x
x;μ
� �þΣtipiΨ i x;μ

� �
¼Σsi

2

Z 1

�1
piΨ i x;μ0� �

dμ0

þ pjΨ jðx;μÞ
Λjðx;μÞ

�piΨ iðx;μÞ
Λiðx;μÞ

 !
þpiQi

2
;

�XrxrX; �1rμr1; ð3:1Þ
where i; j¼1 or 2 with ja i, and
I.
 Ψ iðx;μÞ is the ensemble average of ψ ðx;μÞ over all
physical realizations such that x is in material i;
II.
 Ψ iðx;μÞ is the ensemble average of ψ ðx;μÞ over all
physical realizations such that x is at an interface point
and μ points out of material i;
III.
 pi is the probability of finding material i at point x;
IV.
 Λiðx;μÞ is the Markov transition function of material i,
defined such that a particle moving a distance ds in a
direction μ has a probability ds=Λiðx;μÞ of transferring
from material i to material ja i.

For Markovian statistics, Λiðx;μÞ is simply the mean chord
length in direction μ in material i. Therefore, defining

λi ¼ the mean width of the layers of material i; ð3:2aÞ
we write

Λi x;μ
� �¼ λi

jμj; ð3:2bÞ

pi ¼
λi

λ1þλ2
¼ the volume fraction of material i: ð3:2cÞ

It is important to notice that Eq. (3.1) represents two
equations with four unknowns, namely Ψ 1;Ψ 2;Ψ 1, and
Ψ 2. To obtain a useful set of equations, a closure is
introduced: Ψ i is replaced with Ψi.

Using Eqs. (3.2), the standard LP model for Eqs. (2.1) is
written as

μ
∂piΨ i

∂x
x;μ
� �þΣtipiΨ i x;μ

� �
¼Σsi

2

Z 1

�1
piΨ i x;μ0� �

dμ0

þjμj pjΨ jðx;μÞ
λj

�piΨ iðx;μÞ
λi

� �
þpiQi

2
;

�XrxrX; �1rμr1; ð3:3aÞ

Ψ ið�X;μÞ ¼ 0; 0oμr1; ð3:3bÞ

Ψ iðX;μÞ ¼ 0; �1rμo0; ð3:3cÞ
such that the LP estimate of 〈Ψ 〉 (the ensemble average of
the mean angular flux over all physical realizations) is
given by

〈Ψ 〉ðx;μÞ ¼ p1Ψ 1ðx;μÞþp2Ψ 2ðx;μÞ: ð3:3dÞ
Eqs. (3.3) are known to model problems in purely absorb-
ing media exactly, and to be accurate for problems with
weak scattering. However, the accuracy of this formulation
decreases as scattering increases [9,11].

In Section 2, we have shown that the solution of the
transport equation (2.1a) limits to the solution of the
(atomic mix) diffusion equation (2.12) in the 1-D diffusive
limit. Moreover, when Λi-0, it has been shown [5] that
Eqs. (3.3) limit to the atomic mix formulation given by
Eq. (2.13). This raises the following question:
�
 Is it possible to scale the Markov transition functions
Λiðx;μÞ in such a way that: (i) the resulting Adjusted LP



R. Vasques, N.K. Yadav / Journal of Quantitative Spectroscopy & Radiative Transfer 154 (2015) 98–112 101
equations yield the correct diffusion equation given in
Eq. (2.12); and (ii) the standard LP equations are pre-
served for purely absorbing media?

To answer this question, let us scale the Markov transition
functions such that

Λi x;μ
� �¼ 1

η
λi
jμj; ð3:4Þ

and let us write the ALP equations as

μ
∂piΨ i

∂x
x;μ
� �þΣtipiΨ i x;μ

� �
¼Σsi

2

Z 1

�1
piΨ i x;μ0� �

dμ0

þηjμj pjΨ jðx;μÞ
λj

�piΨ iðx;μÞ
λi

� �
þpiQi

2
;

�XrxrX; �1rμr1; ð3:5aÞ

Ψ ið�X;μÞ ¼ 0; 0oμr1; ð3:5bÞ

Ψ iðX;μÞ ¼ 0; �1rμo0; ð3:5cÞ
where the factor 1=η was taken outside of the parenthesis.
Our aim is to find an expression for η that (i) yields
accurate results in diffusive media; and (ii) yields η¼ 1
in purely absorbing media, in which case Eqs. (3.5) reduce
to the correct standard LP model given by Eqs. (3.3).

3.1. Asymptotic analysis of the ALP equations with η of Oð1Þ

To analyze Eqs. (3.5) in the same asymptotic limit
applied to Eqs. (2.1), we simply take Σti and λi to be Oð1Þ,
X to be Oð1=εÞ, and
Σai ¼Σti�Σsi ¼ ε2σai; ð3:6aÞ
Qi ¼ ε2qi; ð3:6bÞ
Ψ iðx;μÞ ¼ψ iðz;μÞ; ð3:6cÞ
where z is given by Eq. (2.5). Here, the flux depends only
on the “slow” spatial variable z and the angular variable μ,
there being no “fast” spatial variation in Eqs. (3.5).

Assuming η to be Oð1Þ and introducing Eqs. (3.6) into
Eq. (3.5a) we obtain the scaled ALP equations:

εμ
∂piψ i

∂z
z;μ
� �þΣtipiψ i z;μ

� �
¼Σti�ε2σai

2

Z 1

�1
piψ i z;μ

0� �
dμ0

þηjμj pjψ jðz;μÞ
λj

�piψ iðz;μÞ
λi

� �
þε2

piqi
2

: ð3:7Þ

We solve these equations by assuming the ansatz

ψ iðz;μÞ ¼
X1
n ¼ 0

εnψ i;nðz;μÞ: ð3:8Þ

Introducing Eqs. (3.8) into Eq. (3.7) and equating the
coefficients of different powers of ε, we obtain for nZ0:

Σti piψ i;n z;μ
� ��1

2

Z 1

�1
piψ i;n z;μ0� �

dμ0
" #

þηjμj piψ i;nðz;μÞ
λi

�pjψ j;nðz;μÞ
λj

� �
¼ �μ
∂piψ i;n�1

∂z
z;μ
� ��σai

2

Z 1

�1
piψ i;n�2 z;μ0� �

dμ0

þδn;2
piqi
2

; ð3:9Þ

where ψ i;�1 ¼ψ i;�2 ¼ 0. These equations can be solved
recursively: for n¼0, they have only an isotropic solution
of the form

ψ i;0 z;μ
� �¼ϕ0ðzÞ

2
; ð3:10Þ

where ϕ0ðzÞ is undetermined.
For n¼1, Eqs. (3.9) have a solvability condition that is

automatically satisfied. The general solution of the n¼1
equations is

ψ i;1 z;μ
� �¼ 1

2
ϕ1 zð Þ�μf i jμj

� �dϕ0

dz
zð Þ

� �
; ð3:11Þ

where ϕ1ðzÞ is undetermined and

f iðjμjÞ ¼
λ1λ2Σtjþðλ1þλ2Þηjμj

λ1λ2Σt1Σt2þðλ1Σt1þλ2Σt2Þηjμj
: ð3:12Þ

For n¼2, Eqs. (3.9) have a solvability condition that is
not automatically satisfied. This condition is obtained by
first integrating Eqs. (3.9) with n¼2 over �1rμr1, and
then adding the resulting two equations. This gives

0¼ � d
dz

Z 1

�1
μ p1ψ1;1 z;μ

� �þp2ψ2;1 z;μ
� �h i

dμ

�
Z 1

�1
½p1σa1ψ1;0ðz;μÞþp2σa2ψ2;0ðz;μÞ� dμþðp1q1þp2q2Þ:

ð3:13Þ
Introducing Eqs. (3.10) and (3.11) into Eq. (3.13) and
simplifying, we obtain the following diffusion equation
for ϕ0:

� β
3〈Σt〉

d2ϕ0

dz2
zð Þþ〈σa〉ϕ0 zð Þ ¼ 〈q〉; ð3:14Þ

where

〈σa〉¼ p1σa1þp2σa2; ð3:15aÞ

〈q〉¼ p1q1þp2q2; ð3:15bÞ

β¼
Z 1

0
3μ2αðμÞ dμ; ð3:15cÞ

α μ
� �¼ λ1λ2〈Σt〉ðp1Σt2þp2Σt1Þþηðλ1Σt1þλ2Σt2Þμ

λ1λ2Σt1Σt2þηðλ1Σt1þλ2Σt2Þμ
:

ð3:15dÞ
Multiplying Eq. (3.14) by ε2 we obtain

� β
3〈Σt〉

d2Φ0

dx2
xð Þþ〈Σa〉Φ0 xð Þ ¼ 〈Q〉: ð3:16Þ

Finally, Eqs. (2.11), (3.2c), (3.3d), (3.6c), (3.8), and (3.10)
give

ΦðxÞ ¼
Z 1

�1
〈Ψ 〉ðx;μÞ dμ¼Φ0ðxÞþOðεÞ: ð3:17Þ

Thus, Eq. (3.16) is the leading-order asymptotic limit of Eq.
(3.7) as ε-0, and the unknown Φ0ðxÞ in this equation is
the leading-order estimate of the scalar flux.
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We note that the diffusion coefficient in Eq. (3.16) is
equal to the one in Eq. (2.12) only if β¼ 1, which only
happens if αðμÞ ¼ 1. However, if Σt1aΣt2, it is easy to show
that αðμÞ41 for any choice of λi, which implies that β41.
This causes the diffusion coefficient of Eq. (3.16) to be
unphysically large, which considerably affects the solution.
Numerical results presented in Section 4 show that this is
the case for the standard LP equations, in which η¼1.

Furthermore, this analysis indicates that if we choose
ηb1 such that Λi51, both αðμÞ and β approach 1. This
suggests that η should be chosen as Oð1=εkÞ for some k40.
In the next section, we present an asymptotic analysis for
Eqs. (3.5) with η chosen as Oð1=εÞ.

3.2. Asymptotic analysis of the ALP equations with η of
Oð1=εÞ

Let us define the change of variables

〈Ψ 〉ðx;μÞ ¼ p1Ψ 1ðx;μÞþp2Ψ 2ðx;μÞ; ð3:18aÞ

ϑðx;μÞ ¼ ffiffiffiffiffiffiffiffiffiffi
p1p2

p ½Ψ 1ðx;μÞ�Ψ 2ðx;μÞ�; ð3:18bÞ
and rewrite Eq. (3.5a) in an algebraically different (but
equivalent) form [5]:

μ
∂
∂x

〈Ψ 〉

ϑ

" #
þ

〈Σt〉 ν

ν Σ̂ t

" #
〈Ψ 〉

ϑ

" #
¼ 1
2

〈Σs〉 νs
νs Σ̂ s

" #
Φ
φ

" #
þ1
2

〈Q〉

U

� �
:

ð3:19Þ
Here, 〈Σt〉, 〈Σs〉, and 〈Q 〉 are the volume-averaged cross
sections and source, and

Σ̂ t ¼ Σ̂ tðjμjÞ ¼ p2Σt1þp1Σt2þηjμjλ1þλ2
λ1λ2

; ð3:20aÞ

Σ̂ s ¼ p2Σs1þp1Σs2; ð3:20bÞ

ν¼ ffiffiffiffiffiffiffiffiffiffi
p1p2

p ðΣt1�Σt2Þ; ð3:20cÞ

νs ¼
ffiffiffiffiffiffiffiffiffiffi
p1p2

p ðΣs1�Σs2Þ; ð3:20dÞ

U ¼ ffiffiffiffiffiffiffiffiffiffi
p1p2

p ðQ1�Q2Þ; ð3:20eÞ

Φ¼ΦðxÞ ¼
Z 1

�1
〈Ψ 〉ðx;μÞ dμ; ð3:20fÞ

φ¼φðxÞ ¼
Z 1

�1
ϑðx;μÞ dμ: ð3:20gÞ

As we have done in Section 3.1, we take Σti and λi to be
Oð1Þ, X to be Oð1=εÞ, and define

〈Σs〉¼ 〈Σt〉�〈Σa〉¼ 〈Σt〉�ε2〈σa〉; ð3:21aÞ

νs ¼
ffiffiffiffiffiffiffiffiffiffi
p1p2

p ½ðΣt1�Σt2Þ�ðε2σa1�ε2σa2Þ� ¼ ν�ε2νa;

ð3:21bÞ
Table 1
Parameters for diffusive problems.

Set λ1 λ2 Σt1 σa1 q1 Σt2 σa2 q2

A 1.0 0.5
B 1.0 1.0 1.0 0.1 0.2 0 0 0
C 0.5 1.0
〈Q〉¼ ε2〈q〉; ð3:21cÞ

U ¼ ffiffiffiffiffiffiffiffiffiffi
p1p2

p ðε2q1�ε2q2Þ ¼ ε2u; ð3:21dÞ

〈Ψ 〉ðx;μÞ ¼ 〈Ψ 〉ðεz;μÞ ¼ψ ðz;μÞ; ð3:21eÞ

ϑðx;μÞ ¼ϑðεz;μÞ ¼ϑðz;μÞ; ð3:21fÞ

ΦðxÞ ¼ΦðεzÞ ¼ϕðzÞ; ð3:21gÞ

φðxÞ ¼φðεzÞ ¼φðzÞ: ð3:21hÞ
Finally, we assume η to be Oð1=εÞ. This means that Σ̂ t

given in Eq. (3.20a) is Oð1=εÞ, and therefore we define

Σ̂ t ¼ ε�1σ̂ t ; ð3:21iÞ

where σ̂ t ¼ Oð1Þ: Introducing Eqs. (3.21) into Eq. (3.19), we
obtain

εμ
∂
∂z

ψ

ϑ

" #
þ

〈Σt〉 ν
ν σ̂ t=ε

" #
ψ

ϑ

" #

¼ 1
2

〈Σt〉�ε2〈σa〉 ν�ε2νa
ν�ε2νa Σ̂ s

" #
ϕ
φ

" #
þε2

2
〈q〉
u

� �
: ð3:22Þ

In order to solve this equation, we introduce the asymp-
totic expansions

ψ ðz;μÞ ¼
X1
n ¼ 0

εnψnðz;μÞ; ð3:23aÞ

ϑðz;μÞ ¼
X1
n ¼ 0

εnϑnðz;μÞ; ð3:23bÞ

into Eq. (3.22) and equate the coefficients of different
powers of ε. For terms of Oðε�1Þ, we easily obtain

ϑ0ðz;μÞ ¼ 0: ð3:24Þ

For terms of Oðε0Þ, we have

〈Σt〉 ψ0 z;μ
� ��ϕ0ðzÞ

2

� �
þν ϑ0 z;μ

� ��φ0ðzÞ
2

� �
¼ 0; ð3:25aÞ

ν ψ0 z;μ
� ��ϕ0ðzÞ

2

� �
þ σ̂ tϑ1 z;μ

� �¼ Σ̂ s

2
φ0 zð Þ: ð3:25bÞ

Bearing in mind that φnðzÞ ¼
R 1
�1 ϑnðz;μÞ dμ, we introduce

Eq. (3.24) into Eqs. (3.25) and obtain

ψ0 z;μ
� �¼ϕ0ðzÞ

2
; ð3:26aÞ

ϑ1ðz;μÞ ¼ 0; ð3:26bÞ
where ϕ0ðzÞ is undetermined.

For terms of Oðε1Þ, we have

〈Σt〉 ψ1 z;μ
� ��ϕ1ðzÞ

2

� �
þν ϑ1 z;μ

� ��φ1ðzÞ
2

� �
¼ �μ

∂ψ0

∂z
z;μ
� �

;

ð3:27aÞ

ν ψ1 z;μ
� ��ϕ1ðzÞ

2

� �
þ σ̂ tϑ2 z;μ

� �¼ Σ̂ s

2
φ1 zð Þ�μ

∂ϑ0

∂z
z;μ
� �

:

ð3:27bÞ
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Fig. 2. Solutions for the transport and diffusion formulations of the LP models for problem set A: M¼20 (top), 40 (middle), 60 (bottom).
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These equations have a solvability condition that requiresR 1
�1 σ̂ tϑ2 dμ¼ 0. Introducing Eqs. (3.24) and (3.26) (into

Eqs. 3.27), we obtain

ψ1 z;μ
� �¼ϕ1ðzÞ

2
� μ
2〈Σt〉

dϕ0

dz
zð Þ; ð3:28aÞ

ϑ2 z;μ
� �¼ μ

2〈Σt〉
ν
σ̂ t

dϕ0

dz
zð Þ; ð3:28bÞ

where ϕ1ðzÞ is undetermined. Since ϑ2 is an odd function
of μ and σ̂ t ¼ σ̂ tðjμjÞ, the solvability condition is satisfied.

For terms of Oðε2Þ, we have

〈Σt〉 ψ2 z;μ
� ��ϕ2ðzÞ

2

� �
þν ϑ2 z;μ

� ��φ2ðzÞ
2

� �

¼ �μ
∂ψ1

∂z
z;μ
� ��〈σa〉

2
ϕ0 zð Þ�νa

2
φ0 zð Þþ〈q〉

2
; ð3:29aÞ
ν ψ2 z;μ
� ��ϕ2ðzÞ

2

� �
þ σ̂ tϑ3 z;μ

� �

¼ Σ̂ s

2
φ2 zð Þ�μ

∂ϑ1

∂z
z;μ
� ��νa

2
ϕ0 zð Þ�〈σa〉

2
φ0 zð Þþu

2
:

ð3:29bÞ

These equations have a solvability condition obtained by
integrating over �1rμr1, which gives

0¼ � ∂
∂z

Z 1

�1
μψ1 z;μ

� �
dμ�〈σa〉ϕ0 zð Þ�νaφ0 zð Þþ〈q〉;

ð3:30aÞ

Z 1

�1
σ̂ tϑ3 z;μ

� �
dμ¼ Σ̂ sφ2 zð Þ

� ∂
∂z

Z 1

�1
μϑ1 z;μ

� �
dμ�νaϕ0 zð Þ�〈σa〉φ0 zð Þþu: ð3:30bÞ
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Fig. 3. Solutions for the transport and diffusion formulations of the LP models for problem set B: M¼20 (top), 40 (middle), 60 (bottom).
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Introducing Eqs. (3.24), (3.26), and (3.28) into Eqs. (3.30),
we obtain

0¼ 1
3〈Σt〉

d2ϕ0

dz2
zð Þ�〈σa〉ϕ0 zð Þþ〈q〉; ð3:31aÞ

Z 1

�1
σ̂ tϑ3ðz;μÞ dμ¼ �νaϕ0ðzÞþu: ð3:31bÞ

Eq. (3.31a) is the diffusion equation for ϕ0ðzÞ; multi-
plying this equation by ε2, we obtain

� 1
3〈Σt〉

d2Φ0

dx2
xð Þ�〈Σa〉Φ0 xð Þþ〈Q〉; ð3:32Þ

with

ΦðxÞ ¼
Z 1

�1
〈Ψ 〉ðx;μÞ dμ

¼
Z 1

�1
½p1Ψ 1ðx;μÞþp2Ψ 2ðx;μÞ� dμ¼Φ0ðxÞþOðεÞ: ð3:33Þ
Notice that Φ0ðxÞ is the leading-order estimate of the
scalar flux as ε-0. Moreover, the diffusion coefficient in
Eq. (3.32) is identical to the one in Eq. (2.12), confirming
our expectation that the ALP equations yield the correct
diffusion equation when η is of Oð1=εÞ.

In the next section we propose a choice for ηmotivated by
this analysis, and present numerical results that confirm the
theoretical predictions and validate the ALP model.

4. Numerical results

In this section, we present numerical results that confirm
the asymptotic analysis and assess the accuracy of the ALP
model. To perform this assessment, we generate ensemble-
averaged benchmark numerical results to the transport pro-
blem given in Eqs. (2.1). We compare these results with those
obtained with the ALP model, showing that it greatly outper-
forms the standard LP model in diffusive systems.
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Fig. 4. Solutions for the transport and diffusion formulations of the LP models for problem set C: M¼20 (top), 40 (middle), 60 (bottom).
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We also include numerical results for non-diffusive pro-
blems, in order to investigate the accuracy of the ALP model
away from the diffusive limit. For these problems, we compare
the benchmark results with both LP formulations and with
the atomic mix model, as given by Eq. (2.13).

The benchmark results are attained with the benchmark
method introduced in [4], as follows. We obtain a physical
realization of the system by sampling the thicknesses of
individual layers from an exponential distribution with the
mean values λ1 and λ2. This process yields ΣtðxÞ, ΣsðxÞ, and Q
(x) as histograms for this physical realization. We solve
Eqs. (2.1) numerically for this realization, using (i) the stan-
dard discrete ordinate method with a 16-point Gauss–
Legendre quadrature set (S16); and (ii) simple diamond
differencing [13] for the spatial discretization.

We repeat this process a large number of times for
each problem, and average the scalar fluxes to obtain the
ensemble-averaged scalar flux. Following [9,12], we use
the Central Limit Theorem [14] to guarantee that the
statistical relative error in these ensemble-averaged
benchmark results is less than 1% with 95% confidence.

Numerical results for the standard LP and for the ALP
models, respectively given by Eqs. (3.3) and (3.5), were also
generated using the S16 discrete ordinatemethod and diamond
differencing. To solve Eqs. (3.5), we have defined the factor η as

η¼ 〈Σt〉
〈Σa〉

� �1=2

; ð4:1Þ

for 〈Σa〉a0. This choice of η has the following desirable
qualities:
I.
 η is Oð1=εÞ in the 1-D diffusive systems considered in
this work. This means that the ALP equations have the
correct asymptotic behavior, as shown in Section 3.2.
II.
 η¼ 1 when 〈Σa〉¼ 〈Σt〉. This means that the ALP equa-
tions preserve the standard LP equations in purely
absorbing media.
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Fig. 5. Comparison between LP and benchmark results for problem set A: M¼20 (top), 40 (middle), 60 (bottom).
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III.
 η is simple and easy to obtain. Solving the ALP
equations requires the same amount of work as solving
the standard LP equations. The Markov transition
functions are rescaled by only one order of magnitude.
For the test problems included in this paper, we have
chosen material 2 to be a void; this choice does not violate
any of our previous assumptions. In fact, solid–void ran-
dom mixtures correspond to known important physical
applications, such as Pebble Bed Reactor cores [15,16] and
atmospheric clouds (cf. [17]).
4.1. Diffusive systems

To simulate the 1-D random diffusive system used in
our asymptotic analysis, we consider a binary random
system with total width given by

2X ¼ ðλ1þλ2ÞM¼ total width of the system: ð4:2Þ
Here, λ1 and λ2 are defined in Eq. (3.2a), and M is given by

M¼ 1
ε
: ð4:3Þ

The parameters at each spatial point x in material i are
given by

Σt xð Þ ¼Σti; Σa xð Þ ¼ σai

M2; Q xð Þ ¼ qi
M2; ð4:4Þ

and vacuum boundary conditions are assigned at x¼ 7X.
We consider the three sets of problems with para-

meters given in Table 1. These parameters are in agree-
ment with the assumptions of our asymptotic analysis:
λi;Σti;σai, and qi are all Oð1Þ constants, Σai and Qi are Oðε2Þ,
and X is Oð1=εÞ. As ε decreases, the 1-D system approaches
the diffusive limit. Therefore, as M increases, we expect the
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Fig. 6. Comparison between LP and benchmark results for problem set B: M¼20 (top), 40 (middle), 60 (bottom).
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solutions of both the standard and Adjusted LP models to
converge to the solutions of their corresponding diffusion
formulations.

Since our asymptotic analysis does not include bound-
ary conditions, we solve the diffusion equations using the
extrapolated endpoint boundary conditions

Φ0 Xþ 2β
3〈Σt〉

� �
¼Φ0 �X� 2β

3〈Σt〉

� �
¼ 0 ð4:5aÞ

for Eq. (3.16), and

Φ0 Xþ 2
3〈Σt〉

� �
¼Φ0 �X� 2

3〈Σt〉

� �
¼ 0 ð4:5bÞ

for Eq. (3.32).
The solutions of Eqs. (3.3) [LP Transport], (3.5) [Adjusted

LP Transport], (3.16) [LP Diffusion], and (3.32) [Adjusted LP
Diffusion] are plotted in Figs. 2, 3, and 4. The expected
convergence as M increases is clearly seen in each figure,
confirming the results of our asymptotic analysis.

In Figs. 5–7, we again plot the solutions of Eqs. (3.3) and
(3.5), this time comparing them with the benchmark
numerical results of Eqs. (2.1). The standard LP model
systematically disagrees with the benchmark results. As
predicted, its estimate for the scalar flux is incorrectly
flattened. On the other hand, the ALP model estimates the
correct scalar flux with great accuracy.

For a better analysis of these results, we define the
relative errors of the models with respect to the bench-
mark solutions as

ErrðLPÞ xð Þ ¼ΦðLPÞðxÞ�ΦðBÞðxÞ
ΦðBÞðxÞ

; ð4:6aÞ

ErrðALPÞ xð Þ ¼ΦðALPÞðxÞ�ΦðBÞðxÞ
ΦðBÞðxÞ

: ð4:6bÞ
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Fig. 7. Comparison between LP and benchmark results for problem set C: M¼20 (top), 40 (middle), 60 (bottom).

Table 2
Ensemble-averaged scalar fluxes and relative errors at x¼0 (diffusive
problems).

Set M ΦðBÞ ΦðLPÞ ΦðALPÞ ErrðLPÞ (%) ErrðALPÞ (%)

A 20 0.0836 0.0730 0.0828 �12.68 �0.96
40 0.0776 0.0677 0.0777 �12.76 0.13
60 0.0758 0.0660 0.0759 �12.93 0.13

B 20 0.0816 0.0639 0.0825 �21.69 1.10
40 0.0767 0.0585 0.0776 �23.73 1.17
60 0.0758 0.0567 0.0759 �25.20 0.13

C 20 0.0238 0.0195 0.0239 �18.07 0.42
40 0.0210 0.0167 0.0213 �20.48 1.43
60 0.0204 0.0157 0.0204 �23.04 � 0
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Here, ΦðBÞðxÞ, ΦðLPÞðxÞ, and ΦðALPÞðxÞ are the estimated
scalar fluxes obtained with the benchmark, standard LP,
and Adjusted LP models, respectively. The numerical
estimates of each model for the scalar flux at x¼0 are
given in Table 2, as well as the correspondent (percent)
relative errors.

As anticipated, the solutions plotted in Figs. 5–7 and
the data given in Table 2 confirm our claim: the ALP model
greatly outperforms its standard counterpart in the diffu-
sive limit. Next, we investigate the performance of the ALP
model in non-diffusive systems.

4.2. Non-diffusive systems

Here, we present numerical results to assess the accu-
racy of the ALP model away from the diffusive limit
discussed earlier. As in Section 4.1, we compare the LP
and ALP solutions with benchmark numerical solutions of
the transport problem given by Eqs. (2.1). Moreover, we
provide numerical results for the atomic mix approximation
given by Eq. (2.13).
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We define the 1-D binary random systems such that:
I.
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8. Absolute values of the LP and atomic mix relative errors with respect to th
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e 3
tering cross sections for non-diffusive problems.

t Scattering cross section Σs1

Choice 1 Choice 2 Choice 3

0.99 0.95 0.9
0.7 0.5 0.3
0.1 0.05 0.0
III.
X|
10

X|
10

X|
10

e be
Vacuum boundary conditions are assigned at x¼ 720.

IV.
 Material 2 is a void: Σt2 ¼Σs2 ¼Q2 ¼ 0.

V.
 Material 1 has total cross section Σt1 ¼ 1:0 and source

Q1¼0.2.

VI.
 The scattering cross section Σs1 is given in Table 3 for

three different sets of problems.
Similar to Eqs. (4.6a) and (4.6b), we define the relative
error of the atomic mix model with respect to the bench-
mark solutions as

ErrðAMÞ xð Þ ¼ΦðAMÞðxÞ�ΦðBÞðxÞ
ΦðBÞðxÞ

; ð4:6cÞ

where ΦðAMÞðxÞ is the estimated scalar flux obtained by
solving Eq. (2.13). The absolute values of the relative errors
12 14 16 18 20

12 14 16 18 20
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nchmark solutions for problem set D: Σs1 ¼ 0:99 (top), 0.95 (middle),
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Fig. 9. Absolute values of the LP and atomic mix relative errors with respect to the benchmark solutions for problem set E: Σs1 ¼ 0:7 (top), 0.5 (middle), 0.3
(bottom).
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given by Eqs. (4.6) for the problems sets D, E, and F are
given in Figs. 8, 9, and 10, respectively. In Table 4, we
provide the numerical values obtained with each model
for the scalar flux at x¼0, as well as the correspondent
(percent) relative errors.

The x-axis in the plots shown in Figs. 8–10 is the
distance from the origin, due to the symmetry of the
solutions. The spike in the errors close to jxj ¼ 20 is simply
a boundary effect: as the system becomes more absorbing,
the scalar flux away from the boundaries approaches the
“infinite-medium” solution 〈Q 〉=ð2〈Σa〉Þ.

The first plot in Fig. 8 shows that the ALP model
consistently outperforms both the standard LP and the
atomic mix models for the scattering ratio 0.99. However,
as the scattering ratio decreases, standard LP overtakes the
adjusted model in terms of accuracy.

Furthermore, we see from the plots in Fig. 10 and from
the data in Table 4 that the ALP equations preserve the
accuracy of the standard model for systems in which
absorption is high. This validates our choice of η in
Eq. (4.1).

Finally, it is clear that the proposed choice of η does not
improve on the LP results for the whole spectrum of the
scattering ratio. Nevertheless, it significantly improves the
LP equations for diffusive systems, and even outperforms
the atomic mix model when the diffusive parameters are
slightly relaxed. This result paves the road to finding an
expression for η that works for the whole spectrum of the
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Fig. 10. Absolute values of the LP and atomic mix relative errors with respect to the benchmark solutions for problem set F: Σs1 ¼ 0:1 (top), 0.05 (middle),
0.0 (bottom).

Table 4
Ensemble-averaged scalar fluxes and relative errors at x¼0 (non-diffusive problems).

Set Σs1 ΦðBÞ ΦðLPÞ ΦðALPÞ ΦðAMÞ ErrðLPÞ (%) ErrðALPÞ (%) ErrðAMÞ (%)

D 0.99 13.396 12.302 13.667 13.847 �8.17 2.02 3.37
0.95 3.8050 3.7587 3.8412 3.8644 �1.22 0.95 1.56
0.9 1.9729 1.9669 1.9809 1.9863 �0.30 0.41 0.68

E 0.7 0.6659 0.6659 0.6663 0.6665 � 0 0.06 0.09
0.5 0.3999 0.3999 0.3999 0.4000 � 0 � 0 0.03
0.3 0.2857 0.2857 0.2857 0.2857 � 0 � 0 � 0

F 0.1 0.2222 0.2222 0.2222 0.2222 � 0 � 0 � 0
0.05 0.2105 0.2105 0.2105 0.2105 � 0 � 0 � 0
0.0 0.2000 0.2000 0.2000 0.2000 � 0 � 0 � 0
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scattering ratio, which would be of extreme importance
for several random media applications.

5. Discussion

This paper presents an adjustment to the standard Lever-
more–Pomraning equations for diffusive problems in slab
geometry. This adjustment is motivated by an analysis that
shows that, under certain diffusive conditions, the asymptotic
behavior of the LP model deviates from the correct result. This
is confirmed by numerical simulations, providing an explana-
tion for previously observed inaccuracies in the LP model for
diffusive problems.

The asymptotic analysis is valid for physical systems
that (i) have weak absorption and sources; (ii) are optically
thick; and (iii) consist of a large number of material layers
with mean thicknesses comparable to (or small compared
to) a mean free path. It is not necessary that the system be
highly scattering at all points; void regions are permitted.

The analysis shows that, by introducing a factor η¼Oð1=εÞ
to the original LP model, one can fix its asymptotic behavior.
In this work, we have chosen this factor to be η¼
〈Σt〉=〈Σa〉
� �1=2, which (i) yields very accurate results in the
diffusive limit; (ii) preserves the exactness of the LP model for
purely absorbing problems; (iii) is simple to compute.

Claims (i) and (ii) above are confirmed by our numer-
ical results. The numerical simulations presented in this
paper take place in solid–void random mixtures. These
correspond to important physical applications, such as
neutron diffusion in Pebble Bed Reactor (PBR) cores
[15,16], and radiative transfer in atmospheric clouds (cf.
[17]). In PBR cores, the random structure consists of a
mixture of fuel pebbles (solid) and Helium (void). In
atmospheric clouds, the system is a random mixture of
water droplets (solid) and air (void).

From a qualitative viewpoint, the factor η introduced in
the adjusted model consists of a rescaling of the Markov
transition functions: by substituting the original Oð1Þmean
widths λi for the “rescaled” widths λi=η¼ OðεÞ, we are
solving the LP equations in an artificial atomic mix limit,
which yields the asymptotically correct diffusion formula-
tion given by Eq. (2.12).

Asymptotic diffusion approximations of the LP equa-
tions have been considered before [5]. However, these
were performed for systems in which material layers are
optically thick – that asymptotic limit is fundamentally
different from the one considered here. Moreover, to our
knowledge, corresponding asymptotic limits have not
been applied to the original transport equation, so it is
unclear whether the results are physically correct.

Although the analysis developed in this paper can be
extended to multidimensional problems, the diffusion
equations obtained no longer generally hold. For instance,
in general 3-D problems, spatial correlations to the cross
sections will lead to anisotropic diffusion. Nevertheless, for
the diffusive systems considered here, the ALP equations
are a clear improvement over their standard counterpart,
and provide a theoretical tool for examining future gen-
eralizations of the LP model. The numerical results indicate
that the adjusted model remains a valid alternative to
current methods even when the diffusive parameters are
slightly relaxed. The correction proposed in this paper can
be taken as a first step in achieving a generalization of
the LP equations that is accurate for the whole spectrum
of the scattering ratio. We intend to refine this idea in
future work.
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