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a b s t r a c t

This paper presents a derivation and initial study of a new generalized linear Boltzmann

equation (GLBE), which describes particle transport for random statistically homo-

geneous systems in which the distribution function for chord lengths between

scattering centers is non-exponential. Such problems have recently been proposed for

the description of photon transport in atmospheric clouds; this paper is a first attempt

to develop a Boltzmann-like equation for these and other related applications.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the standard (classical) theory of linear particle
transport, the incremental probability dp that a particle at
point x with energy E will experience an interaction while
traveling an incremental distance ds is given by

dp¼Stðx,EÞds,

where St (the cross section) is independent of the
direction of flight X and the path length s, defined by

s¼ the distance traveled by the particle since

its previous interaction ðbirth or scatteringÞ: ð1:1Þ

(In this definition, the instant after a particle is born or
scatters, its value of s is 0.) The assumption that St is
independent of X and s is valid when the locations of the
scattering centers in the system are uncorrelated.
However, to explain experimental observations of solar
radiation in atmospheric clouds, researchers have recently
suggested that the locations of the water droplets in
clouds in fact are correlated, in ways that measurably
affect radiative transfer within the cloud [1–10]. If a cloud
is modeled by taking the water droplets to be randomly
positioned (but correlated), with potential scattering
ll rights reserved.

: +1 734 763 4540.

en),
centers at all points within the cloud droplets, then St is
no longer independent of both s and X. If the positions of
the scattering centers are correlated and the correlations
are independent of direction X, then St is independent of
X but not s: St ¼Stðx,E,sÞ. In this situation, a Boltzmann-
type equation for the radiation field has not previously
been derived. The purpose of this paper is to derive and
analyze such an equation.

For simplicity, we do not consider the most general
problem here. Our analysis is based on five primary
assumptions:
A1
 The physical system is infinite and statistically
homogeneous. (This paper presents an initial theory,
intended to be valid in the absence of statistical
inhomogeneities and finite system boundaries.)
A2
 Particle transport is monoenergetic. (The
inclusion of energy- or frequency-dependence is
straightforward.)
A3
 Particle transport is driven by a specified isotropic
source Q ðxÞ satisfying Q-0 as jxj-1, and the
particle flux -0 as jxj-1.
A4
 The ensemble-averaged total cross section StðsÞ,
defined as

StðsÞds¼ the probability ðensemble� averaged over

all physical realizationsÞ that a particle, scattered
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or born at any point x, and traveling in any

direction X, will experience

a collision between xþsX and xþðsþdsÞX,

ð1:2Þ

is known; see discussion below. (For problems in
general random media, StðsÞ depends also on x and
X. In this paper, the statistics are assumed to be
homogeneous and independent of the direction of
flight, in which case St depends only on s.)
A5
 The distribution function PðX �XuÞ for scattering
from Xu to X is independent of s. (The correlation in
the scattering center positions affects the probabil-
ity of collision, but not the scattering properties
when scattering events occur. This assumption is
valid when the system consists of ‘‘chunks’’ of two
materials, one of which is a void; or when the
materials consist of the same atomic species at
different densities.)
In practice, StðsÞ can be determined by the following
‘‘experimental’’ procedure, which applies for any situation
in which computer realizations of the random system can
be generated.
1.
 Construct a realization of the system, and let
StðxÞ ¼ the total cross section at point x in the system.
2.
 Let: (i) x be a random scattering center in the
realization, (ii) X be a random direction of flight, and
(iii) x be a uniformly distributed random number on
the interval (0,1]. Then, from the standard Monte Carlo
implementation of the Boltzmann transport equation
[11,12], the equation

�lnx¼
Z s

0
StðxþsuXÞdsu

determines the random distance s to the next collision
site.

Fig. 1 depicts this calculation. Here, the non-
overlapping discs represent solid material, at each
point within which particles can scatter, surrounded
by void, within which particles freely stream and do
not scatter. [The discs could be interpreted as water
droplets in a cloud; each point within a disc (water
droplet) is a potential scattering center.]
3.
 If xþsX¼ y is inside the realization, then ‘‘bin’’ the
resulting value of s.
x Ω x+sΩs

Fig. 1. Calculation of random distance s to collision.
4.
 Perform a large number of similar calculations of s,
using a large number of different points x, directions
X, and realizations, to compile an accurate histogram
approximation to p(s), the ensemble-averaged distri-
bution function for the distance to collision.
5.
 Finally, by Eq. (4.7) below, StðsÞ is defined in terms of
p(s) by

StðsÞ ¼
pðsÞ

1�
R s

0 pðsuÞdsu
:

An alternative formulation of p(s) can be obtained as
follows. For a specific physical realization, let x be a
random scattering center (e.g. a random point inside one
of the discs in Fig. 1) and X a random direction of flight.
Then

Pðx,X,sÞ ¼StðxþsXÞe�
R s

o
St ðxþ suXÞ dsu

satisfies

Pðx,X,sÞds¼ the probability that a particle,

released at x in the direction X,

will experience its first collision while

traveling a distance between s and sþds:

Thus, for the specified realization, Pðx,X,sÞ is the distribu-
tion function for the distance to collision s for a particle
released at x in the direction X. Then p(s) is the ensemble
average

pðsÞ ¼/Pðx,X,sÞSðx,X,RÞ ð1:3Þ

over all scattering centers x in the realization, all
directions of flight X, and all possible realizations R.

For a specific random system, is the ensemble-
averaged p(s) exponential? To address this question, let
us consider an almost trivial example: a system in which
each realization is spatially uniform, but with probability
p1 has the total cross section St,1 and with probability
p2=1�p1 has the total cross section St,2. If the total cross
section in the system is St,1, then

pðx,X,sÞ ¼St,1e�St,1s,

and if the total cross section in the system is St,2, then

pðx,X,sÞ ¼St,2e�St,2s:

Therefore, the ensemble-averaged p(s) is

pðsÞ ¼ p1St,1e�St,1sþp2St,2e�St,2s,

which is not exponential. Because even this trivial
example has a non-exponential p(s), it seems evident that
the ensemble-averaged p(s) for a general random system
will not be exponential.

However, there are situations in which p(s) is well-
approximated by an exponential. For example, if the
chunk size of the two materials is very small compared to
a mean free path, then the atomic mix approximation—in
which the cross sections are approximated by their
volume averages—becomes accurate. In this approxima-
tion, the resulting linear Boltzmann equation with homo-
genized cross sections certainly has an exponential p(s).
Also, for systems similar to the depiction in Fig. 1, if the
mean distance between the discs is large compared to the



E.W. Larsen, R. Vasques / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 619–631 621
radii of the discs, and if the centers of the discs are
uncorrelated, then p(s) is again well-approximated by an
exponential.

For systems similar to the depiction in Fig. 1, a
contributing factor to a non-exponential p(s) is
the correlation (or lack thereof) between the centers of
the discs. For atmospheric clouds, the relationship
between the experimentally observed non-exponential
p(s) and the correlations between the locations of the
water droplets is an active area of research [1–10].

The fundamental purpose of this paper is to develop
and discuss a Generalized Linear Boltzmann Equation
(GLBE) for a random system satisfying the five assump-
tions stated above—in which Eq. (1.2) holds and StðsÞ is
known.

From the above discussion, the GLBE approximates the

flux for any specific physical realization by the flux for a

hypothetical problem in which all particles travel a distance s

to collision that is consistent with the ensemble-averaged

probability distribution function p(s). The GLBE does not
‘‘know’’ about the particular geometrical structure of any
specific realization; it treats all realizations identically
through the ensemble-averaged p(s).

The GLBE approximates a random medium by preser-
ving the ensemble-averaged distribution function for
distance-to-collision. The simpler atomic mix model
approximates a random medium by shrinking the chunk
sizes to zero. Because the GLBE preserves an important
element of physics in random systems that is not
preserved by the atomic mix approximation, we expect
that the GLBE will generally be more accurate than the
atomic mix equation. In this paper, we show by numerical
simulations of a problem in nuclear engineering that this
expectation is met.

This paper is an expanded version of a recent
conference paper [13]. A summary of the remainder of
the paper follows. In Section 2 we state definitions and
derive the GLBE. In Section 3 we show that if StðsÞ is
independent of s, the GLBE yields the classical mono-
energetic Boltzmann equation. In Section 4 we derive
(i) the distribution function p(s) for the distance s to
collision in terms of StðsÞ, and (ii) the equilibrium path
length spectrum. In Section 5 we reformulate the GLBE in
terms of integral equations in which s (and for isotropic
scattering, X) is absent; and in Section 6 we show
that the GLBE has a straightforward asymptotic diffusion
limit. Section 7 describes numerical results, based
on Monte Carlo simulations, that confirm the validity
of the GLBE. We conclude with a discussion in
Section 8.
2. Derivation of the GLBE

Using the familiar notation x¼ ðx,y,zÞ ¼ position and
X¼ ðOx,Oy,OzÞ ¼ direction of flight (with jXj ¼ 1), and
using Eq. (1.1) for s, we define:

nðx,X,sÞdV dOds¼ the number of particles in dV dOds

about ðx,X,sÞ, ð2:1aÞ
v¼
ds

dt
¼ the particle speed, ð2:1bÞ

cðx,X,sÞ ¼ vnðx,X,sÞ ¼ the angular flux, ð2:1cÞ

StðsÞds¼ the probability that a particle that has traveled

a distance s since its previous interaction

ðbirth as a source particle or scatteringÞ

will experience its next interaction while

traveling a further distance ds, ð2:1dÞ

c¼ the probability that when a particle experiences a

collision, it will scatter ðc is independent of sÞ,

ð2:1eÞ

PðXu �XÞdO¼ the probability that when a particle with

direction of flight Xu scatters, its outgoing

direction of flightwill lie in dO about X
ðP is independent of sÞ, ð2:1fÞ

Q ðxÞdV ¼ the rate at which source particles are

isotropically emitted by an internal source

Q ðxÞin dV about x: ð2:1gÞ

Then, classic manipulations directly lead to

@

@s
cðx,X,sÞdV dOds¼

@

v@t
vnðx,X,sÞdV dOds

¼
@

@t
nðx,X,sÞdV dOds

¼ the rate of change of the number

of particles in dV dOds about ðx,X,sÞ,

ð2:2aÞ

jX � njcðx,X,sÞdS dOds¼ the rate at which particles in

dOds aboutðX,sÞ flow through

an incremental surface area dS

with unit normal vector n,

X �=cðx,X,sÞdV dOds

¼ the net rate at which particles in dOds about

ðX,sÞ flow ðleakÞ out of dV about x, ð2:2bÞ

StðsÞcðx,X,sÞdV dOds¼StðsÞ
ds

dt
nðx,X,sÞdV dOds

¼
1

dt
½StðsÞds�½nðx,X,sÞdV dOds�

¼ the rate at which particles in

dV dOds about ðx,X,sÞ experience

collisions: ð2:2cÞ

The treatment of the in-scattering and source terms
requires extra care. From Eq. (2.2c),

Z 1
0

StðsuÞcðx,Xu,suÞdsu

� �
dV dOu

¼ the rate at which particles in dV dOu

about ðx,XuÞ experience collisions:

Multiplying this expression by cPðX �XuÞdO, we obtain

cPðX �XuÞ

Z 1
0

StðsuÞcðx,Xu,suÞdsu

� �
dV dOudO

¼ the rate at which particles in dV dOu about

ðx,XuÞ scatter into dV dO about ðx,XÞ:
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Integrating this expression over Xu 2 4p, we get

c

Z
4p

Z 1
0

PðXu �XÞStðsuÞcðx,Xu,suÞdsudOu

� �
dV dO

¼ the rate at which particles scatter

into dV dO about ðx,XÞ: ð2:2dÞ

Finally, when particles emerge from a scattering event,
their value of s is ‘‘reset’’ to s=0. Therefore, the path length
spectrum of particles that emerge from scattering events
is the delta function, dðsÞ. Multiplying the previous
expression by dðsÞds, we obtain

dðsÞc
Z

4p

Z 1
0

PðXu �XÞStðsuÞcðx,Xu,suÞ dsudOu

� �
dV dOds

¼ the rate at which particles scatter

into dV dOds about ðx,X,sÞ: ð2:2eÞ

Also,

dðsÞ
Q ðxÞ

4p dV dOds¼ the rate at which source particles are
emitted into dV dOds about ðx,X,sÞ:

ð2:2fÞ

To proceed, we use the familiar conservation equation
[in each of the following terms, the phrase ‘‘of particles in
dV dOds about ðx,X,sÞ’’ is omitted]:

Rate of change¼ Rate of gain�Rate of loss

¼ ðIn-scatter rate þ Source rateÞ

�ðNet leakage rate þ Collision rateÞ:

Introducing Eqs. (2.2) into this expression and dividing by
dV dOds, we obtain the following generalized linear

Boltzmann equation (GLBE) for cðx,X,sÞ:

@c
@s
ðx,X,sÞþX �=cðx,X,sÞþStðsÞcðx,X,sÞ

¼ dðsÞc
Z

4p

Z 1
0

PðXu �XÞStðsuÞcðx,Xu,suÞdsudOuþdðsÞ
Q ðxÞ

4p :

ð2:3Þ

To repeat, we have for simplicity assumed an infinite
homogeneous system with a ‘‘local’’ source Q ðxÞ; and we
take cðx,X,sÞ-0 as jxj-1.

Eq. (2.3) can be written in a mathematically equivalent
way, in which the delta function is absent. We write
Eq. (2.3) for s40:

@c
@s
ðx,X,sÞþX �=cðx,X,sÞþStðsÞcðx,X,sÞ ¼ 0: ð2:4aÞ

Then, we operate on Eq. (2.3) by

lim
e-0

Z e

�e
ð�Þds,

and we use c¼ 0 for so0 and define

cðx,X,0Þ ¼ lim
s-0þ

cðx,X,sÞ ¼cðx,X,0þ Þ ð2:4bÞ

to obtain

cðx,X,0Þ ¼ c

Z
4p

Z 1
0

PðXu �XÞStðsuÞcðx,Xu,suÞdsudOuþ
Q ðxÞ

4p :

ð2:4cÞ

Eqs. (2.4) are mathematically equivalent to Eq. (2.3). In
particular, we emphasize that the existence of a delta
function in Eq. (2.3) does not imply that the
solution of this equation is singular. In the present
situation, it implies that c is discontinuous at s=0, causing
@c=@s to become singular. [Eq. (2.4b) is a useful definition

of c at s=0 that we use in the ‘‘initial condition’’ (2.4c).]
To establish the relationship between the present work

and the classic number density and angular flux, we
integrate Eq. (2.1a) over s and obtainZ 1

0
nðx,X,sÞds

� �
dV dO¼ the total number of particles

in dV dO about ðx,XÞ:

Therefore, consistently with Eqs. (2.1), we have

Nðx,XÞ ¼
Z 1

0
nðx,X,sÞds¼ classic number density ð2:5Þ

and

Cðx,XÞ ¼ vNðx,XÞ ¼
Z 1

0
cðx,X,sÞds¼ classic angular flux:

ð2:6Þ3. The classic linear Boltzmann equation
If StðsÞ ¼St is independent of s, we can operate on Eq.
(2.3) by

R1
�eð�Þds to obtain an equation for the classic

angular flux Cðx,XÞ ¼
R1

0 cðx,X,sÞds. Using cðx,X,�eÞ ¼
cðx,X,1Þ¼ 0 and Ss ¼ cSt , we easily obtain

X �=Cðx,XÞþStCðx,XÞ ¼Ss

Z
4p

PðXu �XÞCðx,XuÞdOuþ
Q ðxÞ

4p :

ð3:1Þ

This, of course, is the classic linear Boltzmann equation.

4. The path length and equilibrium path length
distributions

Let us consider a single particle, which is released from
an interaction site at x=0 in the direction X¼ i = direction
of the positive x-axis. Eq. (2.4a) for this particle becomes

@

@s
cðx,sÞþ

@

@x
cðx,sÞþStðsÞcðx,sÞ ¼ 0: ð4:1Þ

For this particle, we have

xðsÞ ¼ s and cðxðsÞ,sÞ � FðsÞ: ð4:2aÞ

Therefore,

dF

ds
ðsÞ ¼

@c
@x
ðxðsÞ,sÞ

dx

ds

� �
þ
@c
@s
ðxðsÞ,sÞ ¼

@c
@x
þ
@c
@s
: ð4:2bÞ

Eq. (4.1) simplifies to

dF

ds
ðsÞþStðsÞFðsÞ ¼ 0: ð4:3aÞ

We apply the initial condition

Fð0Þ ¼ 1, ð4:3bÞ

because we are considering a single particle. The solution
of Eqs. (4.3) is

FðsÞ ¼ e�
R s

0
St ðsuÞ dsu

¼ the probability that the particle will travel

the distance s without interacting: ð4:4Þ

The probability of a collision between s and s+ds is

StðsÞFðsÞds¼ pðsÞds, ð4:5Þ
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and therefore

pðsÞ ¼StðsÞe
�
R s

0
St ðsuÞ dsu

¼ distribution function for the

distance� to� collision: ð4:6Þ

Eq. (4.6) expresses p(s) in terms of StðsÞ. To express StðsÞ

in terms of p(s), we operate on Eq. (4.6) by
R s

0ð�Þdsu to getZ s

0
pðsuÞdsu¼ 1�e�

R s

0
St ðsuÞ dsu

or

e�
R s

0
St ðsuÞ dsu

¼ 1�

Z s

0
pðsuÞdsu:

Hence,Z s

0
StðsuÞdsu¼�ln 1�

Z s

0
pðsuÞdsu

� �
:

Differentiating with respect to s, we obtain

StðsÞ ¼
pðsÞ

1�
R s

0 pðsuÞdsu
: ð4:7Þ

Eqs. (4.6) and (4.7) easily show that p(s) is exponential if and
only if StðsÞ is independent of s.

For the case of an infinite medium, with an ‘‘equili-
brium’’ intensity having no space or direction-depen-
dence, Eq. (2.3) for s40 reduces to

dc
ds
ðsÞþStðsÞcðsÞ ¼ 0, ð4:8Þ

which has the solution

cðsÞ ¼ Ae�
R s

0
St ðsuÞ dsu: ð4:9Þ

Normalizing this solution to have integral = unity, we
obtain

wðsÞ ¼ e�
R s

0
St ðsuÞ dsu

R1
0 e�

R s0

0
St ðs00 Þ ds00 dsu

¼ ‘‘ equilibrium’’ spectrum of path lengths s:

ð4:10Þ

From Eq. (4.6), the mean distance to collision (mean
free path) is

/sS¼
Z 1

0
spðsÞds

¼

Z 1
0

s StðsÞe
�
R s

0
St ðsuÞ dsu

� �
ds

¼ s �e�
R s

0
St ðs0 Þ ds0

� �1
0

�

Z 1
0
�e�

R s

0
StðsuÞ dsu

� �
ds

¼

Z 1
0

e�
R s

0
St ðsuÞ dsu ds: ð4:11Þ

Thus, Eq. (4.10) may be written as

wðsÞ ¼ 1

/sS
e�
R s

0
St ðsuÞ dsu: ð4:12Þ

For classic particle transport, in which
StðsÞ ¼St ¼ constant, Eq. (4.12) yields

wðsÞ ¼Ste
�St s:

Hence, for classic particle transport in an infinite medium
problem with no space or angle-dependence, the distribution
of particles at each spatial point and direction of flight that
have traveled a distance s from their previous collision is
exponential. (This result is not surprising.)
5. Integral equation formulations of the GLBE

Let us now define

f ðx,XÞ ¼
Z 1

0
StðsÞcðx,X,sÞds

¼ collision rate density ð5:1Þ

and

gðx,XÞ ¼ c

Z
4p

PðXu �XÞf ðx,XuÞdOu

¼ in-scattering rate density: ð5:2Þ

In the following, we derive integral equations for f and g

that do not contain the path length variable s as an
independent variable. Also, if scattering is isotropic
½PðXu �XÞ ¼ 1=4p�, then gðx,XÞ in Eq. (5.2) becomes
isotropic:

gðxÞ ¼
c

4p

Z
4p

f ðx,XuÞdOu�
c

4p FðxÞ, ð5:3aÞ

where

FðxÞ ¼

Z
4p

f ðx,XuÞdOu¼ scalar collision rate density:

ð5:3bÞ

In this case, we derive an integral equation for FðxÞ which
is independent of both s and X.

First, using the definition (5.1), we write Eqs. (2.4) as

@c
@s
ðx,X,sÞþX �=cðx,X,sÞþStðsÞcðx,X,sÞ ¼ 0, ð5:4aÞ

cðx,X,0Þ ¼ c

Z
4p

PðXu �XÞf ðx,XuÞdOuþ
Q ðxÞ

4p : ð5:4bÞ

Solving Eq. (5.4a) and using Eq. (5.4b), we obtain for s40

cðx,X,sÞ ¼cðx�sX,X,0Þe�
R s

0
St ðsuÞ dsu

¼ c

Z
4p

PðXu �XÞf ðx�sX,XuÞdOuþ
Q ðx�sXÞ

4p

� �
e�
R s

0
St ðsuÞ dsu:

ð5:5Þ

Operating on this equation by
R1

0 StðsÞð�Þds and using
Eqs. (5.1) and (4.6), we get

f ðx,XÞ ¼
Z 1

0
c

Z
4p

PðXu �XÞf ðx�sX,XuÞdOuþ
Q ðx�sXÞ

4p

� �
pðsÞds:

ð5:6aÞ

Also, operating on Eq. (5.5) by
R1

0 ð�Þds and using Eq. (2.6),
we obtain

Cðx,XÞ ¼
Z 1

0
c

Z
4p

PðXu �XÞf ðx�sX,XuÞdOu

�

þ
Q ðx�sXÞ

4p

�
e�
R s

0
St ðsuÞ dsu ds: ð5:6bÞ

Eq. (5.6a) is an integral equation for f ðx,XÞ. If this
equation is solved, then Eq. (5.6b) yields the classic
angular flux Cðx,XÞ.
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Next, we use the definition (5.2) and write Eq. (5.6a) as

f ðx,XÞ ¼
Z 1

0
gðx�sX,XÞþ

Q ðx�sXÞ
4p

� �
pðsÞds: ð5:7Þ

Operating on this result by c
R

4pPðX �XuÞð�ÞdOu, we obtain

gðx,XÞ ¼ c

Z
4p

PðX �XuÞ

Z 1
0

gðx�sXu,XuÞþ
Qðx�sXuÞ

4p

� �
pðsÞds dOu:

ð5:8Þ

Now we make the change of spatial variables from the 3-D
spherical ðs,XuÞ to the 3-D Cartesian xu, defined by

xu¼ x�sXu: ð5:9Þ

Then

s¼ jx�xuj, ð5:10aÞ

Xu¼
x�xu

jx�xuj
, ð5:10bÞ

s2 ds dOu¼ dV u, ð5:10cÞ

and Eq. (5.8) can be written as

gðx,XÞ ¼ c

Z Z Z
P X �

x�xu

jx�xuj

� �
g xu,

x�xu

jx�xuj

� ��

þ
Q ðxuÞ

4p

�
pðjx�xujÞ

jx�xuj2
dV u: ð5:11aÞ

Also, by using the definition (5.2) in Eq. (5.6b), we obtain

Cðx,XÞ ¼
Z 1

0
gðx�sX,XÞþ

Q ðx�sXÞ
4p

� �
e�
R s

0
St ðsuÞ dsu ds:

ð5:11bÞ

Eq. (5.11a) is an integral equation for gðx,XÞ. If this
equation is solved for g, then Eq. (5.11b) determines
Cðx,XÞ.

If scattering is isotropic, then Eqs. (5.3) hold and
Eq. (5.11a) reduces to

c

4p
FðxÞ ¼ c

Z Z Z
1

4p
c

4p
FðxuÞþ

Q ðxuÞ

4p

� �
pðjx�xujÞ

jx�xuj2
dV u

or

FðxÞ ¼

Z Z Z
½cFðxuÞþQ ðxuÞ�

pðjx�xujÞ

4pjx�xuj2
dV u: ð5:12aÞ

Also, using Eq. (5.3a), we write Eq. (5.11b) as

Cðx,XÞ ¼
1

4p

Z 1
0
½cFðx�sXÞþQ ðx�sXÞ�e�

R s

0
St ðsuÞ dsu ds:

ð5:12bÞ

Operating on this equation by
R

4pð�ÞdO and using Eq. (5.9)
and (5.10), we obtain

FðxÞ ¼
Z Z Z

½cFðxuÞþQ ðxuÞ�
e�
R jx�x0 j

0
St ðsuÞ dsu

4pjx�xuj2
dV u, ð5:12cÞ

where FðxÞ is the scalar flux. Eq. (5.12a) is an integral
equation for FðxÞ. If it is solved, then Cðx,XÞ is given by Eq.
(5.12b) and FðxÞ is given by Eq. (5.12c).

Finally, if scattering is isotropic and StðsÞ ¼St ¼

constant, then by Eqs. (5.1) and (2.6),

f ðx,XÞ ¼St

Z 1
0

cðx,X,sÞds¼StCðx,XÞ,
and thus by Eq. (5.3b),

FðxÞ ¼St

Z
4p
Cðx,XuÞdOu¼StFðxÞ:

Also, Eq. (4.6) gives:

pðsÞ ¼Ste
�St s:

Using the previous two results in Eqs. (5.12c) and (5.12b),
we obtain

FðxÞ ¼
Z Z Z

½SsFðxuÞþQ ðxuÞ�
e�St jx�xuj

4pjx�xuj2
dV u ð5:13aÞ

and

Cðx,XÞ ¼
1

4p

Z 1
0
½SsFðx�sXÞþQ ðx�sXÞ�e�St s ds: ð5:13bÞ

Eq. (5.13a) is the classic integral transport equation for the
scalar flux FðxÞ, and Eq. (5.13b) is the classic expression
for the angular flux Cðx,XÞ in terms of FðxÞ.

Thus, for general anisotropic scattering, an integral
equation formulation of the GLBE [Eqs. (5.11)] can be
obtained which does not contain the path length variable
s as an independent variable. If scattering is isotropic, then
the classic scalar flux can be obtained using Eqs. (5.12a)
and (5.12c), in which the direction variable X also does
not occur as an independent variable. Finally, if scattering
is isotropic and StðsÞ ¼St ¼ constant, then—as they
must—these integral equations reduce to the classic
integral equation (5.13a) for the scalar flux.

6. Asymptotic diffusion limit of the GLBE

To begin this discussion, we must first consider the
Legendre-polynomial expansion of the distribution func-
tion PðX �XuÞ ¼ Pðm0Þ defined by Eq. (2.1f)

Pðm0Þ ¼
X1
n ¼ 0

2nþ1

4p
anPnðm0Þ, ð6:1Þ

where a0=1 and a1 ¼ m0 ¼mean scattering cosine. We
define P�ðm0Þ by

P�ðm0Þ ¼ cPðm0Þþ
1�c

4p
, ð6:2Þ

which has the Legendre polynomial expansion:

P�ðm0Þ ¼
X1
n ¼ 0

2nþ1

4p
a�nPnðm0Þ, ð6:3aÞ

a�n ¼
1, n¼ 0,

can, nZ1:

(
ð6:3bÞ

Using previous work [14–18] as a guide, we scale
St ¼Oð1Þ,1�c¼Oðe2Þ,Q ¼Oðe2Þ,P�ðm0Þ is independent of
e,@c=@s¼Oð1Þ, and X �=c¼OðeÞ, with e51. Eqs. (2.3)
and (6.2) yield

@c
@s
ðx,X,sÞþeX �=cðx,X,sÞþStðsÞcðx,X,sÞ

¼ dðsÞ
Z

4p

Z 1
0

P�ðX �XuÞ�e2 1�c

4p

� �
StðsuÞcðx,Xu,suÞdsudOu

þe2dðsÞ
Q ðxÞ

4p
: ð6:4Þ
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The scaling in this equation implies the following:
1.
 The large [O(1)] terms describe neutron scattering. The
transport process is dominated by scattering, with the
source rate, the absorption rate, and the leakage rates
being asymptotically smaller. Also, the length scale for
the problem is chosen so that a unit of length is
comparable to a typical mean free path, and the system
is many mean free paths thick.
2.
 The leakage ðX � rcÞ term is small ½OðeÞ�. Thus, the
angular flux c varies a small ½OðeÞ� amount over the
distance of one mean free path.
3.
 The absorption term 1�c¼Sa=St and the source term
Q are smaller ½Oðe2Þ�, and are balanced in such a way
that the infinite medium solution

c¼
Q

4pSa
,

which holds when the source and cross sections are
constant, is O(1).
4.
 Because scattering is anisotropic, it is possible to scale
the constants an in Eq. (6.1) in other ways with respect
to e. However, the scaling defined in Eq. (6.3) has the
virtue of being one of the simplest possible—only the
n=0 constant a0 is ‘‘stretched’’ asymptotically; the
higher-order ðnZ1Þ terms are not stretched. Also,
when this scaling is applied to a standard linear
Boltzmann equation, one obtains the same diffusion
equation that is obtained from the standard P1 or
spherical harmonics approximation.
The asymptotic derivation of diffusion approximations
from the Boltzmann transport equation has been a topic
of study over many years. We refer the reader to
Refs. [14–18] as a representative sampling of the
literature.

To proceed with the asymptotic analysis of Eq. (6.4),
we use Eq. (4.12) to define Cðx,X,sÞ by

cðx,X,sÞ �Cðx,X,sÞwðsÞ ¼Cðx,X,sÞ
e�
R s

0
St ðsuÞ dsu

/sS
: ð6:5Þ

Then Eq. (6.4) for cðx,X,sÞ becomes the following
equation for Cðx,X,sÞ:

@C
@s
ðx,X,sÞþeX �=Cðx,X,sÞ

¼ dðsÞ
Z

4p

Z 1
0

P�ðX �XuÞ�e2 1�c

4p

� �
pðsuÞCðx,Xu,suÞdsudOu

þe2dðsÞ/sS
Q ðxÞ

4p : ð6:6Þ

This equation is mathematically equivalent to the follow-
ing two coupled equations:

@C
@s
ðx,X,sÞþeX �=Cðx,X,sÞ ¼ 0, s40, ð6:7aÞ

Cðx,X,0Þ ¼

Z
4p

P�ðX �XuÞ�e2 1�c

4p

� � Z 1
0

pðsuÞCðx,XusuÞdsudOu

þe2/sS
Q ðxÞ

4p , ð6:7bÞ
where (as before) we have defined Cðx,X,0Þ ¼Cðx,X,0þ Þ.
Integrating Eq. (6.7a) over 0osuos, we obtain

Cðx,X,sÞ ¼Cðx,X,0Þ�eX �=
Z s

0
Cðx,X,suÞ dsu

¼

Z
4p

P�ðX �XuÞ�e2 1�c

4p

� � Z 1
0

pðsuÞCðx,Xu,suÞdsu dOu

þe2/sS
QðxÞ

4p �eX �=
Z s

0
Cðx,X,suÞdsu:

Introducing into this equation the ansatz

Cðx,X,sÞ ¼
X1
n ¼ 0

enCðnÞðx,X,sÞ

and equating the coefficients of different powers of e, we
obtain for nZ0:

CðnÞðx,X,sÞ ¼

Z
4p

P�ðX �XuÞ

Z 1
0

pðsuÞCðnÞðx,Xu,suÞdsudOu

�X �=
Z s

0
Cðn�1Þ

ðx,X,suÞdsu

�
1�c

4p

Z
4p

Z 1
0

pðsuÞCðn�2Þ
ðx,Xu,suÞdsudOu

þdn,2/sS
Q ðxÞ

4p
, ð6:8Þ

with Wð�1Þ
¼Wð�2Þ

¼ 0. We now solve these equations
recursively, first for n=0, then n=1, etc. In doing this, we
use the Legendre polynomial expansion (6.3) of P�ðm0Þ.

Eq. (6.8) with n=0 is

Cð0Þðx,X,sÞ ¼

Z
4p

P�ðX �XuÞ

Z 1
0

pðsuÞCð0Þðx,Xu,suÞdsudOu:

The general solution of this equation is

Cð0Þðx,X,sÞ ¼
Fð0ÞðxÞ

4p
, ð6:9Þ

where Fð0ÞðxÞ is, at this point, undetermined.
Next, Eq. (6.8) with n=1 is

Cð1Þðx,X,sÞ ¼

Z
4p

P�ðX �XuÞ

Z 1
0

pðsuÞCð1Þðx,Xu,suÞdsudOu

�
s

4pX �=Fð0ÞðxÞ: ð6:10Þ

This equation has a particular solution of the following
form:

Cð1Þpartðx,X,sÞ ¼
gðsÞ

4p
X �=Fð0ÞðxÞ: ð6:11aÞ

Introducing this form into Eq. (6.10) and using
a�1 ¼ ca1 ¼ cm0, we obtain the following equation for g(s):

gðsÞ ¼ cm0

Z 1
0

pðsuÞgðsuÞdsu�s,

which has the solution:

gðsÞ ¼ � sþ
cm0

1�cm0

/sS
� �

, ð6:11bÞ

where /sS¼mean free path is defined by Eq. (4.11).
Hence, the general solution of Eq. (6.10) is

Cð1Þðx,X,sÞ ¼
Fð1ÞðxÞ

4p �
1

4p sþ
cm0

1�cm0

/sS
� �

X �=Fð0ÞðxÞ,

ð6:12Þ

where Fð1ÞðxÞ is undetermined.
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We next consider Eq. (6.8) with n=2. This equation has
a solvability condition, which is obtained by
operating by

R
4p
R1

0 pðsÞð�Þds dO. Using Eqs. (6.12) and
(6.9) to obtain

Z s

0
Cð1Þðx,X,suÞdsu¼ s

Fð1ÞðxÞ
4p �

1

4p
s2

2
þ

cm0

1�cm0

/sSs

� �
X �=Fð0ÞðxÞ

andZ
4p

P�ðX �XuÞ

Z 1
0

pðsuÞCð0Þðx,Xu,suÞdsudOu¼
Fð0ÞðxÞ

4p
,

the solvability condition becomes

0¼
1

4p

Z
4p

Z 1
0

pðsÞ
s2

2
þ

cm0

1�cm0

/sSs

� �
ðX � rÞ2Fð0ÞðxÞds dO

�
1�c

4p

Z
4p

Z 1
0

pðsÞFð0ÞðxÞds dOþ/sSQ ðxÞ:

Evaluating the angular integrals and rearranging, we
obtain the following diffusion equation for Fð0ÞðxÞ:

�
1

3

/s2S
2/sS

þ
cm0

1�cm0

/sS
� �

r
2Fð0ÞðxÞþ

1�c

/sS
Fð0ÞðxÞ ¼ Q ðxÞ:

ð6:13Þ

To summarize: the solution cðx,X,sÞ of Eq. (6.4)
satisfies

cðx,X,sÞ ¼
Fð0ÞðxÞ

4p
e�
R s

0
St ðsuÞ dsu

/sS
þOðeÞ, ð6:14Þ

where Fð0ÞðxÞ satisfies Eq. (6.13). Also, integrating Eq.
(6.14) over 0oso1 and X 2 4p, and using Eq. (4.11), we
obtain to leading order:

Fð0ÞðxÞ ¼
Z

4p

Z 1
0

cðx,X,sÞds

� �
dO¼

Z
4p
cðx,XÞdO, ð6:15Þ

where [see Eq. (2.6)] cðx,XÞ is the classic angular flux. Thus,

the solution Fð0ÞðxÞ of Eq. (6.13) is the classic scalar flux.
Eq. (6.13) is, of course, a much simpler equation than

the generalized linear Boltzmann equation (2.3). In
Eq. (6.13), the angular and path length variables are
absent, and the non-exponential path length distribution
manifests itself as a non-classical definition of the
diffusion coefficient. If the path length distribution is
exponential, then by Eq. (4.6), pðsÞ ¼Ste�St s, which gives
/sS¼ 1=St and /s2S¼ 2=S2

t ; and then, as it must,
Eq. (6.15) reduces to the classic diffusion equation:

�
1

3Stð1�cm0Þ
r2Fð0ÞðxÞþStð1�cÞFð0ÞðxÞ ¼Q ðxÞ: ð6:16Þ

The ‘‘non-classical’’ diffusion coefficient in Eq. (6.13):

D¼
ð1�cm0Þ/s2Sþ2cm0/sS2

6ð1�cm0Þ/sS
ð6:17Þ

is obviously positive for 0rm0r1, but showing that
DZ0 for �1rm0o0 requires more effort. To do this, we
use the Cauchy–Schwartz inequality to get

/sS2
¼

Z 1
0

spðsÞ ds

� �2

¼

Z 1
0
½sp1=2ðsÞ�½p1=2ðsÞ�ds

� �2
r
Z 1

0
s2pðsÞds

� � Z 1
0

pðsÞds

� �
¼/s2S, ð6:18Þ

with equality holding only when

s2pðsÞ ¼ ðconstantÞpðsÞ, 0oso1,

and this holds only when

pðsÞ ¼ dðs�s0Þ, ð6:19Þ

where d is the familiar delta function and s0 is any positive
constant. (In this situation, particles travel a fixed distance
s0 between collisions.) Since m0o0, the inequality (6.18)
implies

ðm0Þ/sS2
Zðm0Þ/s2S,

so Eq. (6.17) gives

DZ
ð1�cm0Þ/s2Sþ2cm0/s2S

6ð1�cm0Þ/sS
¼

1þcm0

1�cm0

� �
/s2S
6/sS

Z0:

ð6:20Þ

Interestingly, D limits to 0 when the following three
conditions are met:
1.
 The inequality (6.18) becomes equality. [This happens
only when pðsÞ ¼ dðs�s0Þ.]
2.
 m0-�1. [This happens when particles only back-
scatter 1801.]
3.
 c-1. [This is already implied by the asymptotic
analysis, which requires 1�c¼ Oðe2Þ.]

The first two conditions imply that particle histories
consist of simple ‘‘bouncing’’ back and forth between two
points that lie a fixed distance s0 apart. Thus, particles
become ‘‘trapped’’—they cannot diffuse away from their
point of birth, and the result D=0 is appropriate.

To summarize: for all �1rm0r1 and 0rcr1, the
diffusion coefficient in Eq. (6.13) is non-negative, and in
the one circumstance in which D=0, this result is
physically correct.

We also note that if p(s) decays algebraically as s-1 as

pðsÞZ
constant

s3
for sb1, ð6:21aÞ

then

/s2S¼
Z 1

0
s2pðsÞds¼1: ð6:21bÞ

In this case, the asymptotic diffusion approximation devel-
oped above is invalid, because the asymptotic analysis
tacitly requires /sS and /s2S to both be finite.

Physically, the asymptotic diffusion theory becomes
invalid when /s2S¼1 because particles will travel large
distances between collisions too often. When /s2So1,
the probability that a particle will scatter between
two distant points is sufficiently small that the diffusion
process can occur. However, when /s2S¼1, sufficiently
long flight paths will occur sufficiently often that the
diffusion description developed here becomes invalid. It
seems unlikely that the asymptotic analysis can be
generalized to develop a standard diffusion description
when /s2S¼1. This is because the occurrence of ‘‘long’’
flight paths between collisions (over distances in which
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the flux can vary appreciably) is inherently a character-
istic of transport, not diffusion processes.

We note that in [10], the cases /s2So1
and /s2S¼1 are, respectively, called standard diffusion

and anomalous diffusion. Our analysis indicates that
in the context of the GLBE, standard diffusion is an
asymptotic approximation, while anomalous diffusion
is not.

7. Numerical results

To test the theory developed above, we consider a 2-D
random system that models a 3-D pebble-bed nuclear
reactor core. In the real 3-D problem, the reactor core is
randomly filled with about 500,000 roughly tennis-ball-
sized ‘‘pebbles’’ (spheres), each composed of graphite
moderator containing several thousand microspheres of
nuclear fuel, surrounded by an outer ceramic shell. In the
model 2-D problem considered here,
�
 Neutrons are monoenergetic, travel only in the (x,y)-
plane [19], and scatter isotropically.

�
 Each spherical ‘‘pebble’’ is modeled as a homogeneous

circular disc of radius r in the (x,y)-plane.

�
 The reactor core is modeled as a square box with side

of length L, inside which the circular fuel discs are
randomly placed using the ‘‘ballistic deposition meth-
od’’ described below.

Thus, the term ‘‘2-D’’ describes both the geometry and
the particle transport of the model. We have written a
Monte Carlo computer code that constructs random
realizations of the 2-D core, and a second Monte Carlo
code that performs 2-D neutron transport inside the
heterogeneous core. In this manner, we have performed
Fig. 2. Steps of a random 2
2-D Monte Carlo particle transport simulations in the
random cores and compared the resulting ‘‘exact’’ results
to approximate results obtained from the GLBE and the
atomic mix models. In the following, we give details of
generating the random realizations of the system and the
subsequent numerical results.

First, the reactor core is randomly filled using an
adaptation of the ‘‘ballistic deposition model’’ presented
in [20]. In this model, each disc is released at a random
point above the box. The disc follows a steepest descent
trajectory until it reaches a position that is stable under
gravity, in which case it is frozen in place—once the
position of the disc is locked, it can no longer move. Fig. 2
contains four snapshots of a packing performed with this
process: (A) disc 1 descends vertically to the bottom of the
box, where it becomes locked in place; (B) disc 2 descends
until it touches the frozen disc 1; then it rolls down disc 1
until it touches the bottom of the box, where it is locked in
place; (C) disc 3 descends vertically to the bottom of the
box; (D) disc 4 descends until it touches the frozen disc 3;
then it rolls down disc 3 until it touches disc 2; since discs
2 and 3 cannot move, disc 4 is stable and is locked in
place.

Since frozen discs cannot move, the inclusion of a new
disc will not cause the system to rearrange; thus
cascading events (‘‘avalanches’’) will not occur. Also, no
velocity or friction coefficients are taken into account; the
only restriction is that a disc can never, at any point of its
trajectory, overlap the boundaries of the box or another
disc. Once a disc has reached its final stable position, it is
frozen in place and a new disc is released; this process is
repeated until the box is filled. An example of random
piling with L=40r is shown in Fig. 3.

Given a realization of the model core, we selected the
disc closest to the center of the system to be the one in
which particles are born (i.e., we focus on the transport of
-D packing process.



Fig. 3. Example of a 2-D random structure in a system with side L = 40r.

Table 1
2-D parameters for discs with radius r (Problem 1).

2rSt,1 2rSs,1 2rSa,1 c¼Ss,1=St,1 P1ðX �XuÞ

1.0 0.99 0.01 0.99 1=2p

Table 2
Monte Carlo transport results (Problem 1).

/sS=2r /s2S=4r2 /x2þy2S=4r2

Ensemble average 1.22151 3.04209 303.517

Relative statistical error (%) 0.070 0.153 0.134

Table 3
Atomic Mix and GLBE Diffusion Coefficients.

D Sa

GLBE
/s2S
4/sS

1�c

/sS

Atomic Mix
1

2fSt,1
fSa,1
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particles generated by a single fuel disc). The particles’
subsequent histories within the system are determined by
our Monte Carlo transport code, which numerically
calculates /sS¼mean distance to collision, /s2S¼
mean squared distance to collision, and /x2þy2S¼ the
mean-squared distance of a particle from its point of birth.

For the first of two problems that we simulated, we
took the background material 2 in which the discs are
piled to be a vacuum, with zero cross sections; the cross
sections and other parameters for material 1 (inside the
discs) are given in Table 1.

For each realization of the random system, we
calculated the histories of 20,000 particles; the statistical
error in each realization was found to be (with 97.5%
confidence) less than 0.052% for all values of /sS, less
than 0.115% for all values of /s2S, and less than 0.089%
for all values of /x2þy2S. We constructed 1024 different
random packings in the 2-D system with L = 600r

(summing to a total of 20,480,000 particles’ histories);
the average Monte Carlo results and the statistical error
bounds (with 95% confidence) are given in Table 2.

Also, the average packing fraction (the mean fraction of
the area of the box occupied by fuel discs) was calculated
as f = 0.817, with estimated standard deviation 0.00133.

Next, we consider the following 2-D diffusion equa-
tion, defined for an infinite 2-D planar system with a point
source at the origin isotropically emitting Q particles
per second:

�D
@2

@x2
Fðx,yÞþ

@2

@y2
Fðx,yÞ

� �
þSaFðx,yÞ ¼QdðxÞdðyÞ: ð7:1Þ

For problems in which Sa5Ss, the GLBE and the atomic
mix transport equation are both modeled by this diffusion
equation, although with different prescriptions for D and
Sa (see Table 3).

Here the GLBE expressions come from Eq. (6.13), and
the atomic mix expressions come from homogenizing
material 1 with the void material 2, with the volume
fraction of material 1 taken as f=0.817. The factor 1/2
(rather than 1/3) in the atomic mix diffusion coefficient
occurs because diffusion occurs in a 2-D plane.

Recalling that FðxÞ-0 and rFðxÞ-0 as jxj-1, we
can manipulate Eq. (7.1) to derive an exact (diffusion)
formula for the mean square distance that particles travel
from their point of birth. To do this, we multiply Eq. (7.1)
by x2 + y2 and integrate over �1ox,yo1 to get

�D

Z 1
�1

Z 1
�1

ðx2þy2Þ
@2

@x2
þ
@2

@y2

� �
Fðx,yÞ dx dy

þSa

Z 1
�1

Z 1
�1

Fðx,yÞdx dy¼ 0: ð7:2Þ

However, integrating by parts twice givesZ 1
�1

ðx2þy2Þ
@2F
@x2

dx¼�2

Z 1
�1

x
@F
@x

dx¼ 2

Z 1
�1

Fdx,

so Eq. (7.2) yields

/x2þy2S¼

R1
�1

R1
�1
ðx2þy2ÞFðx,yÞdx dyR1

�1

R1
�1

Fðx,yÞdx dy
¼

4D

Sa
: ð7:3Þ

Combining this with results from Table 2, we obtain

/x2þy2S¼

/s2S
1�c

GLBE,

2

f 2St,1Sa,1
Atomic Mix:

8>>><
>>>:

ð7:4Þ

Not surprisingly, the GLBE and Atomic Mix approx-
imations predict different mean-squared distances of
particles from their point of birth. To test these predic-
tions, we compare them to the ‘‘exact’’ values obtained



Table 6
Monte Carlo transport results (Problem 2).

/sS=2r /s2S=4r2 /x2þy2S=4r2

Ensemble average 0.30492 0.20174 19.733

Relative statistical error (%) 0.067 0.157 0.129

Table 7
RMS distance from point of birth (Problem 2).

/x2þy2S1=2=2r % Relative error

Monte Carlo 4.442 0.0645

GLBE 4.491 1.103

Atomic Mix 4.327 2.589
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from the 2-D Monte Carlo transport simulations and given
in Table 2.

Using Eq. (7.4), Table 2 for /s2S; Table 1 for St,1,Sa,1,
and c; and f=0.817, we obtain the numerical estimates of
the root mean square (RMS) distance of particles from
their point of birth shown in Table 4.

Here the Monte Carlo error is estimated using the
Central Limit Theorem with 95.0% confidence, and the
GLBE and Atomic Mix errors are the percent relative
differences between these RMS distance estimates and the
Monte Carlo estimate.

The estimated Monte Carlo error (0.082%) is smaller
than the estimated GLBE and Atomic Mix errors. Thus,
most of the errors in the GLBE and Atomic Mix estimates
are modeling errors caused by the fact that the GLBE and
Atomic Mix models do not perfectly reproduce the
transport physics. Table 4 shows that for the considered
problem, the GLBE and Atomic Mix errors are both small
(less than 0.6%), but the GLBE error is about five times
smaller than the Atomic Mix error.

To test the GLBE results on a more difficult problem (a
less diffusive problem which is further away from the
atomic mix limit), we consider in Problem 2 exactly the
same geometric situation as in Problem 1, except that the
cross sections are all multiplied by a factor of 4 (see
Table 5).

Just as before, for each realization of this random
system we calculated the histories of 20,000 particles; the
statistical error in each realization was now found to be
(with 97.5% confidence) less than 0.039% for all values of
/sS, less than 0.086% for all values of /s2S, and less than
0.063% for all values of /x2þy2S. As before, we
constructed 1024 different random packings in the 2-D
system with L = 600r (summing to a total of 20,480,000
particle histories); the average Monte Carlo results and
the statistical error bounds (with 95% confidence) are
given in Table 6.

For Problem 2, the average packing fraction was
calculated to be f = 0.817, with the standard deviation
0.00133. (Not surprisingly, these numbers are identical to
those calculated for Problem 1.) Using the above results,
we calculate the RMS distance that particles travel from
their point of birth; these are given in Table 7.
Table 4
RMS distance from point of birth (Problem 1).

/x2þy2S1=2=2r % Relative error

Monte Carlo 17.422 0.082

GLBE 17.442 0.115

Atomic Mix 17.318 0.597

Table 5
2-D parameters for discs with radius r (Problem 2).

2rSt,1 2rSs,1 2rSa,1 c¼Ss,1=St,1 P1ðX �XuÞ

4.0 3.96 0.04 0.99 1=2p
As before, we estimated the Monte Carlo error in this
table using the Central Limit Theorem with 95.0%
confidence, and we defined the GLBE and Atomic Mix
errors to be the percent relative differences between these
RMS distance estimates and the Monte Carlo estimate.
The estimated Monte Carlo error (0.0645%) is again
smaller than the estimated GLBE and Atomic Mix errors.
Therefore, most of the errors in the GLBE and Atomic Mix
estimates are again modeling errors. Table 7 shows that
for Problem 2, the GLBE and Atomic Mix errors are still
small (now less than 2.6%), but larger than for Problem 1.

Problems 1 and 2 differ in the following two ways:
1.
 Because the solid material cross sections in Problem 2
are all larger than those in Problem 1 by a factor of 4,
Problem 2 is further away from the atomic mix limit.
This should cause the Atomic Mix solution to be less
accurate in Problem 2 than in Problem 1.ffiffiffiffiffiffiffiffiffiffiffiffiffiffip
2.
 Because the diffusion length L¼ 1= 3SaSt is smaller
in Problem 2 by a factor of 4 than in Problem 1,
Problem 2 is less ‘‘diffusive,’’ i.e. it is one in which a
diffusion approximation is less likely to be able to
accurately model the transport physics. [To maintain
the diffusive character of Problem 1 in Problem 2, it
would have been necessary to decrease (not increase)
Sa by a factor of 4. We did not do this because it would
have drastically increased the run time of our Monte
Carlo simulations.] This reduction in the diffusive
character of Problem 2 should cause our Atomic Mix
and GLBE results to both degrade, since both are based
on a diffusion approximation.

The GLBE solution has about 1/5 the error of the Atomic
Mix solution in Problem 1, and about 1/2 the error of the
Atomic Mix solution in Problem 2. In both problems, the
Atomic Mix error is small (less than 3%), but the GLBE
error is smaller. Due to the expense of generating
numerical solutions, we did not test other problems.

Nonetheless, we can confidently assert the following:
the 2-D diffusion model of a pebble bed reactor
considered here is one for which the Atomic Mix result
is reasonably accurate, but the GLBE result is more
accurate. The probable reason for the increased accuracy
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of the GLBE diffusion model is that it uses detailed physics
properties of the random system (/sS and /s2S) that are
not used in the simpler Atomic Mix approximation. For
this reason, the GLBE asymptotic diffusion model will
likely continue to be more accurate than the Atomic Mix
solution for other ‘‘diffusive’’ particle transport problems
in random media.
8. Discussion

We have developed a new generalized linear Boltz-
mann equation (GLBE), which describes particle transport
for infinite statistically homogeneous random media in
which the ensemble-averaged distribution function p(s)
for the path length s between collisions is non-exponen-
tial. We have shown that the GLBE (i) can be cast as
integral equations in which the path length variable s is
absent, and (ii) has an asymptotic diffusion limit, in which
s and X are both absent. Using Monte Carlo simulations,
we have shown that the GLBE models a random,
heterogeneous system (a 2-D model of a pebble bed
reactor) more accurately than the standard atomic mix
approximation; this indicates that the GLBE may be useful
for other problems in which the atomic mix approxima-
tion is not considered to be sufficiently accurate.

Compared to the standard linear Boltzmann equation,
the generalized linear Boltzmann equation contains one
extra independent variable (the path length s). Therefore,
the GLBE will be much more costly to numerically
simulate using deterministic methods than the standard
Boltzmann equation. (The standard linear Boltzmann
equation is already costly to solve; adding an extra
independent variable would only make matters worse.)
However, Monte Carlo methods for the GLBE should be
only slightly more costly to use than for the standard
Boltzmann equation; the only difference is that
the distance to collision will be sampled from a
non-exponential distribution function. Also, approximate
GLBE methods, such as the asymptotic diffusion approx-
imation considered here, can have a phase space with the
same dimensionality as approximations for the standard
Boltzmann equation.

The GLBE is more costly to simulate than the Atomic
Mix approximation. The Atomic Mix approximation only
requires that one know the cross sections of the
constituent materials and their volume fractions. The
GLBE requires much more detailed information—which
must be obtained by constructing realizations of the
random system and developing an accurate estimate of
the ensemble-averaged distribution function for distance
to collision.

Nonetheless, because the GLBE method preserves
certain statistical properties of the original random
system, we believe that it represents a systematically
more accurate alternative to the Atomic Mix approxima-
tion. It is possible that simplifications to the GLBE
equation can be developed that will make the resulting
theory less costly to implement. For example, given the
values of /sS and /s2S, the asymptotic diffusion
approximation to the GLBE is no more difficult to
implement than any other diffusion approximation. Also,
for the asymptotic diffusion method, it is not necessary to
determine the entire distribution function p(s); it is only
necessary to determine two of its moments:
/snS¼

R1
0 snpðsÞds for n=1 and 2. Other simplifications

of the GLBE method presented in this paper that preserve
a limited number of moments of p(s) are likely possible.

Generalizations of the present GLBE method are
possible as well. For instance, the GLBE equation
developed in this paper defines p(s) to be independent
of x and X by ensemble-averaging Pðx,X,sÞ over all x,X,
and realizations R [see Eq. (1.3)]:

pðsÞ ¼/Pðx,X,sÞSðx,X,RÞ: ð8:1Þ

A more accurate result could be obtained by ensemble-
averaging over x and R but not X:

pðX,sÞ ¼/Pðx,X,sÞSðx,RÞ, ð8:2Þ

and a still more accurate result could be obtained by
ensemble-averaging over R but not X or x:

pðx,X,sÞ ¼/Pðx,X,sÞSR: ð8:3Þ

In fact, we have shown in a more complex analysis that by
defining pðX,sÞ as in Eq. (8.2), the asymptotic diffusion
limit described in this paper yields a more accurate
anisotropic diffusion equation containing a diffusion
tensor [21,22]. The rates of diffusion can differ in different
directions because the physical structure of the random
medium has a systematic asymmetry. For example, in the
case of a pebble-bed reactor, the force of gravity always
acts in an asymmetric manner, causing a slightly greater
rate of diffusion in the vertical direction than in the
horizontal direction. This result is not visually obvious in
Fig. 3, but it is there nonetheless. (Details of this work will
be published elsewhere.)

The present work was originally motivated by recent
atmospheric sciences publications [1–10], in which
the distribution function p(s) for solar radiation in
atmospheric clouds has been experimentally determined
to be non-exponential, because of strong correlations
between the scattering centers (water droplets) within
the clouds. For the methodology developed in this paper
to become applicable to these problems, the following
generalizations must be made:
�
 The theory must account for finite clouds, in which
the solar radiation enters the system through the
boundary.

�
 The theory must account for statistically heteroge-

neous clouds, whose ensemble-averaged cross section
may be dependent on both space and the direction of
flight.

�
 A sufficiently inexpensive and accurate mathematical

model of the GLBE must be developed for practical
applications. [The asymptotic diffusion approximation
developed in this paper will not be accurate for
optically thin clouds, or for parts of clouds in which
Eq. (6.21a) holds.]

�
 The physical mechanisms that generate the correla-

tions between water droplets in clouds should be
studied, and the theoretical relationship between these
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correlations and the non-exponential distribution
function p(s) should be determined.

The first two of these tasks are reasonably straightfor-
ward, but the third and fourth may be significantly more
difficult. As an initial attempt to address the fourth task,
analytic expressions for p(s) should be developed for
specified (perhaps model) random systems, in order to
better understand how the detailed structure of these
systems can affect p(s). These tasks cannot be considered
here, but they should be pursued in future work.
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