Uma Nova Versão do Método LTA_N

A.V. CARDONA¹, Faculdade de Matemática, PUCRS, Av. Ipiranga 6681, prédio 15, sala 143, 90619-900 Porto Alegre, RS, Brasil

R. VASQUES, M.T. VILHENA, Instituto de Matemática, PPGMAp, UFRGS, Av. Bento Gonçalves 9500, 91509-900 Porto Alegre, RS, Brasil.

Resumo. Recentemente, foi proposta uma solução da equação de transporte de nêutrons em uma placa através de uma versão do método LTA_N baseada na diagonalização de uma matriz (2Nx2N). Neste trabalho, visando melhorar o tempo computacional do método LTA_N , apresentamos uma nova versão deste método baseada na diagonalização de uma matriz NxN. Simulações numéricas são apresentadas para um problema de transporte com alto grau de anisotropia.

1. Introdução

Em 1997, Cardona & Vilhena [1] propuseram uma nova maneira de derivação das equações A_N [3, 5], aplicando a transformação de Kuznetsov [8] sobre a aproximação S_N da equação de transporte [7]. As equações A_N foram então resolvidas pela aplicação da transformada de Laplace, resolução do sistema linear resultante para o fluxo angular transformado e inversão da transformada de Laplace do fluxo angular pelo algoritmo de Trzaska [14]. Este procedimento foi denominado método LTA_N. No entanto, o método LTA_N com o algoritmo de Trzaska mostrou-se inapropriado para resolver problemas de transporte com altos graus de anisotropia. Então, recentemente, Cardona et al. [2] apresentaram uma nova versão do método LTA_N baseada na diagonalização de uma matriz (2N)x(2N), que se mostrou competente na resolução de problemas de transporte com altos graus de anisotropia.

Neste trabalho, visando reduzir o tempo de computação da formulação LTA_N, propomos uma nova versão deste método baseada na diagonalização de uma matriz NxN, a qual é obtida após algumas manipulações algébricas sobre as equações A_N transformadas. Para tanto, este trabalho é esquematizado como segue: na Seção 2, a nova solução LTA_N é detalhada, e na Seção 3 são apresentadas soluções numéricas e discussões de resultados.

¹acardona@pucrs.br - autor para contato

2. A Nova Solução LTA_N

Visando expor a nova versão da formulação LTA_N , aqui denominada $ELTA_N$, vamos considerar o problema de transporte em uma placa, dado pela equação:

$$\mu \frac{\partial \varphi}{\partial x}(x,\mu) + \sigma_t \varphi(x,\mu) = \frac{\sigma_s}{2} \sum_{k=0}^L \beta_k P_k(\mu) \int_{-1}^1 P_k(\mu') \varphi(x,\mu') d\mu', \quad 0 \le x \le a, \quad (2.1)$$

onde $\varphi(x,\mu)$ denota o fluxo angular na posição xe na direção $\mu,$ sujeita às condições de contorno:

$$\varphi(0,\mu) = f(\mu), \quad \mu > 0$$
 (2.2)

е

$$\varphi(a, -\mu) = 0, \quad \mu > 0.$$
 (2.3)

Aqui é adotada a notação padrão para as seções de choque, $P_k(\mu)$ é o polinômio de Legendre e L denota o grau de anisotropia do problema.

Aplicando a transformação de Kuznetsov [8], definida como

$$\varphi(x,\mu) = \left\{ \begin{array}{ll} u(x,\mu) + v(x,\mu), \ se \ \mu > 0 \\ u(x,-\mu) - v(x,-\mu), \ se \ \mu < 0 \end{array} \right.$$

na equação (2.1), obtemos as seguintes equações:

$$\mu \frac{\partial v}{\partial x}(x,\mu) + \sigma_t u(x,\mu) = \sigma_s \sum_{\substack{k=0 \\ \text{par}}}^L \beta_k P_k(\mu) \int_0^1 P_k(\mu') u(x,\mu') d\mu', \quad \mu > 0$$
(2.4)

 \mathbf{e}

$$\mu \frac{\partial u}{\partial x}(x,\mu) + \sigma_t v(x,\mu) = \sigma_s \sum_{\substack{k=0\\\text{impar}}}^L \beta_k P_k(\mu) \int_0^1 P_k(\mu') v(x,\mu') d\mu', \quad \mu > 0.$$
(2.5)

Então, seguindo a idéia da aproximação S_N [7] nas equações (2.4) e (2.5), obtemos o seguinte sistema de equações diferenciais ordinárias lineares:

$$\mu_n \frac{\partial v}{\partial x}(x,\mu_n) + \sigma_t u(x,\mu_n) = \sigma_s \sum_{\substack{k=0\\\text{par}}}^L \beta_k P_k(\mu_n) \sum_{m=1}^N \omega_m P_k(\mu_m) u(x,\mu_m)$$
(2.6)

 \mathbf{e}

$$\mu_n \frac{\partial u}{\partial x}(x,\mu_n) + \sigma_t v(x,\mu_n) = \sigma_s \sum_{\substack{k=0\\\text{impar}}}^L \beta_k P_k(\mu_n) \sum_{m=1}^N \omega_m P_k(\mu_m) v(x,\mu_m) \quad (2.7)$$

com n = 1 : N, as quais são conhecidas como equações A_N . Os coeficientes μ_k e ω_k , para k = 1 : N, denotam respectivamente as abscissas e os pesos do esquema de quadratura de Gauss-Legendre no intervalo [0,1].

Para obter a solução ELTA_N, primeiramente aplicamos a transformada de Laplace nas equações A_N (2.6 - 2.7), resultando nas seguintes equações matriciais:

$$s\bar{u}(s) = u(0) + A\bar{v}(s) \tag{2.8}$$

e

$$s\bar{v}(s) = v(0) + B\bar{u}(s),$$
 (2.9)

onde os vetores u(x) e v(x) são respectivamente definidos por $[u(x, \mu_1), ..., u(x, \mu_N)]^T$ e $[v(x, \mu_1), ..., u(v, \mu_N)]^T$ e a barra denota a transformada de Laplace destes vetores. As matrizes NxN A e B têm como elementos, respectivamente:

$$A_{i,j} = \frac{\sigma_s}{\mu_i} \sum_{\substack{k=0\\\text{impar}}}^{L} \beta_k P_k(\mu_i) \omega_j P_k(\mu_j) - \frac{\sigma_t}{\mu_i} \delta_{i,j}$$

 \mathbf{e}

$$B_{i,j} = \frac{\sigma_s}{\mu_i} \sum_{\substack{k=0 \\ \text{par}}}^{L} \beta_k P_k(\mu_i) \omega_j P_k(\mu_j) - \frac{\sigma_t}{\mu_i} \delta_{i,j},$$

onde $\delta_{i,j}$ denota a delta de Kroenecker. Então, substituindo a equação (2.9) em (2.8), obtemos que:

$$(s^{2}I - AB)\bar{u}(s) = su(0) + Av(0), \qquad (2.10)$$

onde I denota a matriz identidade NxN. A matriz AB é denominada matriz $ELTA_N$.

Finalmente, diagonalizando a matriz NxN AB, ou seja, fazendo $AB = XDX^{-1}$, onde X é a matriz dos autovetores de AB e D a matriz diagonal contendo os autovalores de AB, e usando as propriedades da transformada de Laplace, obtemos após a resolução da equação matricial (2.10) e a inversão da transformada de Laplace que:

$$u(x) = X \left(e^{\sqrt{D}(x-a)} \triangle + e^{-\sqrt{D}x} \Gamma \right)$$

е

$$v(x) = A^{-1}XD^{-\frac{1}{2}} \left(e^{\sqrt{D}(x-a)} \triangle - e^{-\sqrt{D}x} \Gamma \right),$$

onde os vetores desconhecidos \triangle e Γ são obtidos pela aplicação das condições de contorno (2.2 - 2.3).

3. Resultados Numéricos e Conclusões

Para mostrar a capacidade do método ELTA_N , do ponto de vista computacional, para resolver problemas de transporte com alto grau de anisotropia, vamos apresentar simulações numéricas para um problema idealizado com os seguintes parâmetros: espessura da placa a = 100, fluxo incidente na origem $f(\mu_k) = 1$, espalhamento anisotrópico de grau L = 82, coeficientes β_l assumidos como os da função de fase Haze L [6, 13], $\sigma_t = 1 \text{ e } \sigma_s = 0, 9$. Considerando a equivalência entre as equações A_N e S_{2N} mostradas em Coppa et al. [4], resultados para o fluxo escalar em x = 0, 50e 100 pelos métodos ELTA_N, LTA_N [2] e LTS_{2N} [13], para N = 50, 200 e 350 são apresentados na Tabela 1, bem como os tempos de computação em um microcomputador Pentium III 733 MHz, visando uma comparação da performance numérica desses métodos.

Tabela 1: Resultados numéricos para o fluxo escalar pelos métodos ELTA_N, LTA_N e LTS_{2N} (L = 82, a = 100, $\sigma_s = 0.9$ e $\sigma_t = 1.0$).

Método	fluxo escalar	fluxo escalar	fluxo escalar	tempo
	$\operatorname{em} x = 0$	em x = 50	em x = 100	(seg)
$ELTA_{50}$	6.4238912×10^{-1}	9.8733618×10^{-7}	$1.4453059 \times 10^{-12}$	0.06
$ELTA_{200}$	6.4238913×10^{-1}	9.8733660×10^{-7}	$1.4453071 \times 10^{-12}$	3.39
$ELTA_{350}$	6.4238912×10^{-1}	9.8733598×10^{-7}	$1.4453053 \times 10^{-12}$	18.95
LTA_{50}	6.4238912×10^{-1}	9.8733618×10^{-7}	$1.4453059 \times 10^{-12}$	0.14
LTA_{200}	6.4238912×10^{-1}	9.8733618×10^{-7}	$1.4453059 \times 10^{-12}$	16.44
LTA_{350}	6.4238912×10^{-1}	9.8733618×10^{-7}	$1.4453059 \times 10^{-12}$	80.44
LTS_{100}	6.4238061×10^{-1}	9.8734335×10^{-7}	$1.4453487 \times 10^{-12}$	0.26
LTS_{400}	6.4238860×10^{-1}	9.8733662×10^{-7}	$1.4453085 \times 10^{-12}$	18.44
LTS_{700}	6.4238895×10^{-1}	9.8733633×10^{-7}	$1.4453067 \times 10^{-12}$	89.25

Analisando os resultados mostrados na Tabela 1, observamos que a formulação LTA_N apresenta, além de um pequeno ganho em tempo de computação, uma possível maior taxa de convergência em relação ao método LTS_{2N} . Considerando que já foi feita uma análise de convergência e estimativa de erro do método LTS_{2N} [11, 12], acreditamos que podemos estender esta aparente melhora na taxa de convergência do método LTA_N pela extensão da análise de convergência e estimativa de erro ao referido método. Também podemos observar uma propagação do erro numérico do método $ELTA_N$ com aumento de N devida ao mal-condicionamento da matriz.

Por outro lado, os resultados numéricos para o fluxo escalar através da formulação ELTA₅₀ apresentaram uma coincidência de pelo menos oito dígitos com os resultados do método LTA₅₀, com um considerável ganho no tempo de computação. Esta redução de tempo de computacional é relevante em muitas aplicações, como por exemplo em engenharia nuclear e física de reatores, que não demandam aproximações com N> 200.

Finalizando, acreditamos que o método ELTA_N é uma ferramenta computacional robusta para resolver problemas nas áreas das aplicações mencionadas. Como trabalho futuro, pretendemos aplicar a idéia do método ELTA_N combinada com o método espectral apresentado por Oliveira et al. [9, 10] na solução do problema de transporte em placas planas dependente do tempo.

Agradecimentos

A. V. Cardona agradece à FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) pelo suporte financeiro parcial deste trabalho. R. Vasques e M. T. Vilhena agradecem ao CNPq (Conselho Nacional de Desenvolvimento Tecnológico e Científico) pelo apoio financeiro parcial deste trabalho.

Abstract. Recently, it was proposed a solution for the neutron transport equation in a slab using a version of the LTA_N method based upon the diagonalization of a 2Nx2N matrix. In this work, with the goal of improving the computational time, we present a new version of the LTA_N method based upon the diagonalization of a NxN matrix. Numerical simulations are presented for a transport problem with high anisotropy.

Referências

- [1] A.V. Cardona e M.T.M.B. Vilhena, Analytical solution for the A_N approximation, Annals of Nuclear Energy, 24 (1997), 495-505.
- [2] A.V. Cardona, M.T.M.B. Vilhena, J.V.P. de Oliveira e R. Vasques, The onedimensional LTA_N solution in a slab with high order of quadrature, em "Proceedings of 18^{th} International Conference on Transport Theory", pp. 260-264, 2003.
- [3] G. Coppa e P. Ravetto, An approximate method to study the one velocity neutron integral transport equation, Annals of Nuclear Energy, 9 (1982), 169-174.
- [4] G. Coppa, P. Ravetto e M. Sumini, Numerical performance of the A_N method and comparisons with S_N calculations, *Atomkernenergie Kerntechnik*, **42** (1983), 107-110.
- [5] G. Coppa, P. Ravetto e M. Sumini, Approximate solution to neutron transport equation with linear anisotropic scattering, *Journal of Nuclear Science and Technology*, **20** (1983), 822-831.
- [6] J. Lenoble, "Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere", NCAR, Boulder, USA, 1977.
- [7] E.E. Lewis e W.F. Miller Jr., "Computational Methods of Neutron Transport", American Nuclear Society, Illinois, 1993.
- [8] G.J. Marchuk, "Methods of Numerical Mathematics", Springer-Verlag, New York, 1975.
- [9] J.V.P. de Oliveira, A.V. Cardona e M.T.M.B. Vilhena, Solution of the onedimensional time-dependent discrete ordinates problem in a slab by the spectral and LTS_N methods, *Annals of Nuclear Energy*, **29** (2002), 13-20.

- [10] J.V.P. de Oliveira, A.V. Cardona, M.T.M.B. Vilhena e R.C. de Barros, A semianalytical numerical method for time-dependent radiative transfer problems in slab geometry with coherent isotropic scattering, *Journal of Quantitative Spectroscopy and Radiative Transfer*, **73** (2002), 55-62.
- [11] R.P. Pazos e M.T.M.B. Vilhena, Convergence in transport theory, Applied Numerical Mathematics, 30 (1999), 79-92.
- [12] R.P. Pazos, M.T.M.B. Vilhena e M. Thompson, Error bounds for spectral collocation method for the linear Boltzmann equation, *International Journal* of Computation and Numerical Analysis and Application, 1 (2002), 237-268.
- [13] C.F. Segatto, M.T.M.B. Vilhena e M.G. Gomes, The one-dimensional LTS_N solution in a slab with high degree of quadrature, *Annals of Nuclear Energy*, **26** (1999), 925-934.
- [14] Z. Trzaska, An efficient algorithm for partial fraction expansion of the linear matrix pencil inverse, *Journal of the Franklin Institute*, **324** (1987), 465-477.